A galaxy cluster gets sloshed

Dec 14, 2011 By Janet Anderson and Megan Watzke
Credits: X-ray: NASA/CXC/BU/L.Blanton; Optical: ESO/VLT

(PhysOrg.com) -- Like wine in a glass, vast clouds of hot gas are sloshing back and forth in Abell 2052, a galaxy cluster located about 480 million light years from Earth. X-ray data (blue) from NASA's Chandra X-ray Observatory shows the hot gas in this dynamic system, and optical data (gold) from the Very Large Telescope shows the galaxies. The hot, X-ray bright gas has an average temperature of about 30 million degrees.

A huge spiral structure in the hot gas -- spanning almost a million light years -- is seen around the outside of the image, surrounding a at the center. This spiral was created when a small smashed into a larger one that surrounds the central elliptical galaxy.

As the smaller cluster approached, the dense hot gas of the central cluster was attracted to it by gravity. After the smaller cluster passed the cluster core, the direction of motion of the cluster gas reversed and it traveled back towards the cluster center. The cluster gas moved through the center again and "sloshed" back and forth, similar to wine sloshing in a glass that was jerked sideways. The sides of the glass push the wine back to the center, whereas in the cluster the of the matter in the clusters pulls it back. The sloshing gas ended up in a spiral pattern because the collision between the two clusters was off-center.

This type of sloshing in Abell 2052 has important physical implications. First, it helps push some of the more dense, cooler gas located in the center of the cluster -- where temperatures are only about 10 million degrees -- farther away from the core. This helps prevent further cooling of this gas in the core and could limit the amount of new stars being formed in the central galaxy. Sloshing motions like those seen in Abell 2052 also redistribute heavy elements, like iron and oxygen, which are forged in supernova explosions. These elements are used in the of stars and planets and are necessary for life as we know it.

Chandra's observation of Abell 2052 was particularly long, lasting more than a week. Such a deep observation was necessary to detect all of the details in this image. Even then, processing to emphasize more subtle features was necessary to reveal the outer .

In addition to the large-scale spiral feature, the deep Chandra observation reveals exquisite detail in the center related to outbursts from the central supermassive black hole. The Chandra data show clear bubbles evacuated by material blasted away from the black hole, which are surrounded by dense, bright, cool rims. As with the sloshing, this activity helps prevent cooling of the gas in the cluster's core, setting limits on the growth of the giant elliptical galaxy and its supermassive black hole.

Explore further: New mass map of a distant galaxy cluster is the most precise yet

Related Stories

Black Hole Pumps Iron

Sep 14, 2009

(PhysOrg.com) -- This composite image of the Hydra A galaxy cluster shows 10-million- degree gas observed by Chandra in blue and jets of radio emission observed by the Very Large Array in pink. Optical data ...

Enriching the intracluster medium

Mar 22, 2011

(PhysOrg.com) -- Galaxies are sometimes found in large clusters with many hundreds of members. Typically there is a giant elliptical galaxy near the center; most of these ellipticals are very bright emitters ...

Galaxy cluster takes it to the extreme

May 30, 2007

Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA’s Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years ...

Chandra catches early phase of cosmic assembly

Aug 15, 2004

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from ...

Recommended for you

Satellite galaxies put astronomers in a spin

3 hours ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

3 hours ago

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

Ultra-deep astrophoto of the Antenna Galaxies

3 hours ago

You might think the image above of the famous Antenna Galaxies was taken by a large ground-based or even a space telescope. Think again. Amateur astronomer Rolf Wahl Olsen from New Zealand compiled a total ...

The most precise measurement of an alien world's size

5 hours ago

Thanks to NASA's Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dtyarbrough
1 / 5 (3) Dec 14, 2011
What where they sloshing around in their glasses when they came up with this explanation for xrays so far from a heat source. Xrays are not super energetic photons. Their ability to penetrate matter is due to their small size and weak magnetic fields. Xrays occur when cosmic rays reach far enough to disturb cold photons. If they reach even farther to even colder photons, gamma rays are produced.
ccr5Delta32
5 / 5 (3) Dec 14, 2011
@ dtyarbrough " Xrays are not super energetic photons " That is precisely what they are ,high energy photons with about a wavelength of 1nm
Maybe you're confusing them with something else ? . I can't think what though !!