How fruit flies can teach us about curing chronic pain and halting mosquito-borne diseases

Dec 06, 2011

Studies of a protein that fruit flies use to sense heat and chemicals may someday provide solutions to human pain and the control of disease-spreading mosquitoes.

In the current issue of Nature, biologist Paul Garrity of the National Center for Behavioral Genomics at Brandeis University and his team, spearheaded by KyeongJin Kang and Vince Panzano in the Garrity lab, discover how fruit flies distinguish the warmth of a summer day from the pungency of wasabi by using TRPA1, a protein whose human relative is critical for pain and inflammation.

In earlier research Garrity's team showed that flies, like humans, sense chemical irritants with TRPA1, indicating an ancient origin for harmful chemical sensing. In 2008, the team demonstrated that this protein serves a second function in flies: sensing warmth.

Gentle warmth and nasty chemicals trigger distinct responses. How can both responses rely on the same sensor? The team has now discovered that there is an easy answer. Insects actually make two forms of TRPA1, one specialized for each task.

Such TRPA1 specialization has implications for devising bug sprays and traps to combat the transmission of diseases like malaria, and . "This work on TRPA1 can explain how blood-sucking insects like mosquitoes discriminate noxious chemicals, which repel them, from the warmth of a human, which attracts them," says Garrity. "By activating one kind of TRPA1 you might be able to deter mosquitoes from biting you, while activating the other kind of TRPA1 might lure mosquitoes to a trap."

These findings also have implications for understanding the way that human damage-sensing neurons work, explains Garrity. Since human TRPA1 is a aimed at treating diseases such as asthma, migraines, and chronic pain, Garrity says it's important to understand how TRPA1 proteins operate.

" are easy to work with in the lab and this lets us test hypotheses about how TRPA1 operates quickly and relatively cheaply." Says Garrity. "Fortunately, the function of TRPA1 seems evolutionarily ancient and conserved from flies to to humans, so one can gain insights of general biomedical relevance using flies."

"Untreatable and insect-borne diseases are two major human health problems," says Garrity. "When you think about basic research translating into treatments to help people, work in these areas has tremendous potential for easing human misery."

The study was co-authored by: Kyeongjin Kang, Vincent C. Panzano, Elaine C. Chang, Lina Ni, Alexandra M. Dainis and Paul A. Garrity from the National Center for Behavioral Genomics and Volen Center for Complex Systems, Department of Biology, Brandeis University; Adam M. Jenkins, Kimberly Regna, from Boston College; Marc A. T. Muskavitch from The Broad Institute and Harvard School of Public Health.

Explore further: How calcium regulates mitochondrial carrier proteins

Related Stories

Scientists sniff out the evolution of chemical nociception

Mar 17, 2010

Whenever you choke on acrid cigarette smoke, feel like you're burning up from a mouthful of wasabi-laced sushi, or cry while cutting raw onions and garlic, your response is being triggered by a primordial chemical sensor ...

Chlorine Triggers Protective Nerve Receptor

Apr 09, 2008

Inhaling chlorine triggers a nerve receptor that protects healthy people by inducing sneezing, coughing, and irritation, but can cause major problems for people with asthma and other respiratory problems, ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

13 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

14 hours ago

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.