Fish may provide key to stopping disease spread, researcher says

December 12, 2011

A small fish may prove useful to understanding a worldwide health problem, if a Wayne State University researcher is correct.

Jeff Withey, Ph.D., assistant professor of immunology and microbiology in WSU's School of Medicine, recently received two grants from the National Institute of Allergy and , part of the National Institutes of Health, to use zebrafish to study the spread of cholera and characterize signals that induce the disease in humans.

Cholera, which has been studied for nearly 150 years, strikes about 5 million people annually, causing 100,000 deaths. It's caused by the ingestion of the (V. cholerae), usually through drinking . V. cholerae occurs naturally in the environment and normally doesn't cause problems unless consumed by humans, when it then colonizes the upper small intestine.

There the bacteria become pathogens, causing severe diarrhea that can result in the loss of up to a liter of body fluid an hour and rapid death through dehydration. Once V. cholerae passes through a , it can spread rapidly in its more virulent form, often causing epidemics or .

Withey's first study will attempt to establish zebrafish as a functional natural for V. cholerae. Researchers recently have found that the bacteria, which often live on shellfish, insect egg masses and plankton, also colonize the intestinal tracts of vertebrate fish.

With a grant of $418,000, Withey's group will try to induce V. cholerae to colonize inside zebrafish, either by injecting it directly into the digestive system after administering a small dose of anesthetic, or by adding it to the water in which the fish live. Researchers then will try to determine which parts of the fish become colonized, how long the process takes and how much of the bacteria must be present to cause infection and death.

Early research has shown that zebrafish whose digestive systems are injected with V. cholerae are colonized but do not develop disease, Withey said, but that when the bacteria is added to the water in which the fish live, it secretes a substance known as cholera toxin (CT) that can kill the fish.

"We will look at the best ways to do experiments and see what parts of fish bacteria colonize," Withey said. "That will lead to future studies where we determine what colonization factors might be."

The zebrafish model, he said, is less expensive, simpler and more biologically relevant than existing V. cholerae models using mice or rabbits, neither of which is a natural host for the bacteria. Withey believes a zebrafish model should enable future researchers to identify the elusive signals for inducing V. cholerae virulence in humans.

"Identifying these signals should uncover new components of the virulence pathway, as well as new therapeutic targets," he said.

The second study, funded by a $361,000 grant, will focus on the bacteria itself, attempting to determine how V. cholerae senses and responds to signals to activate its expression of CT and other virulence factors that cause the symptoms of cholera. Withey also will try to track the complex regulatory cascade as the bacteria shuts down its virulence gene expression before escaping the host and returning to the environment.

In humans, bicarbonate is a major inducer of V. cholerae virulence and is found in high concentrations in the upper small intestine. Bile, also present in the , is another regulatory signal. Withey's studies are aimed at learning the mechanisms by which such signals cause V. cholerae to secrete CT and become toxic.

"Regulation of virulence gene expression is a common theme among bacterial pathogens, including well-known ones like salmonella or E. coli," he said. "These studies will significantly increase our understanding not only of V. cholerae pathogenesis, but of bacterial pathogens as a whole."

Explore further: Cholera vaccine could protect affected communities

Related Stories

Cholera vaccine could protect affected communities

November 27, 2007

A vaccine used to protect travelers from cholera, an infection characterized by diarrhea and severe dehydration, could also be used effectively among those living in cholera-prone (endemic) areas, according to a research ...

Vibrio bacteria found in Norwegian seafood and seawater

February 24, 2009

(PhysOrg.com) -- While working on her doctorate, Anette Bauer Ellingsen discovered potentially disease-causing vibrios (Vibrio cholerae, V. parahaemolyticus and V. vulnificus) in Norwegian seafood and inshore seawater.

Researchers work towards pharmacological targets for cholera

January 20, 2011

Just over a year after the earthquake in Haiti killed 222,000 people there's a new problem that is killing Haitians. A cholera outbreak has doctors in the area scrambling and the water-borne illness has already claimed 3600 ...

Recommended for you

A 100-million-year partnership on the brink of extinction

May 24, 2016

A relationship that has lasted for 100 million years is at serious risk of ending, due to the effects of environmental and climate change. A species of spiny crayfish native to Australia and the tiny flatworms that depend ...

Silencing cholera's social media

May 24, 2016

Bacteria use a form of "social media" communication called quorum sensing to monitor how many of their fellow species are in the neighborhood, allowing them to detect changes in density and respond with changes in collective ...

Evolution influenced by temporary microbes

May 24, 2016

Life on Earth often depends on symbiotic relationships between microbes and other forms of life. A new theory suggests that researchers should consider how symbiotic microbes can influence the evolution of life on Earth, ...

Great apes communicate cooperatively

May 24, 2016

Human language is a fundamentally cooperative enterprise, embodying fast-paced interactions. It has been suggested that it evolved as part of a larger adaptation of humans' unique forms of cooperation. In a cross-species ...

Rare evolutionary event detected in the lab

May 23, 2016

It took nearly a half trillion tries before researchers at The University of Texas at Austin witnessed a rare event and perhaps solved an evolutionary puzzle about how introns, non-coding sequences of DNA located within genes, ...

In changing oceans, cephalopods are booming

May 23, 2016

Humans have changed the world's oceans in ways that have been devastating to many marine species. But, according to new evidence, it appears that the change has so far been good for cephalopods, the group including octopuses, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.