Elemental 'cookbook' guides efficient thermoelectric combinations

December 14, 2011

A repository developed by Duke University engineers that they call a "materials genome" will allow scientists to stop using trail-and-error methods for combining electricity-producing materials called "thermoelectrics."

Thermoelectric produce electricity by taking advantage of temperature differences on opposite sides of a material. They are currently being used in deep space satellites and camp coolers. But until now, scientists have not had a rational basis for combining different elements to produce these energy-producing materials.

The project developed by the Duke engineers covers thousands of compounds, and provides detailed "recipes" for creating most efficient combinations for a particular purpose, much like hardware stores mix different colors to achieve a particular tint of paint. The database is free and open to all (aflowlib.org).

"We have calculated the thermoelectric properties of more than 2,500 compounds and have calculated all their energy potentials in order to come up with the best candidates for combining them in the most efficient ways," said Stefano Curtarolo, associate professor of and and physics at Duke's Pratt School of Engineering. "Scientists will now have a more rational basis when they decide which elements to combine for their thermoelectric devices."

The results of the Duke team's work were published online in the journal Physics Review X.

A thermoelectric device takes advantage of temperature differences on opposite sides of a material – the greater the temperature difference, the greater energy potential.

Thermoelectric devices are currently used, for example, to provide power for deep-space satellites. The side of the device facing the sun absorbs heat, while the underside of the device remains extremely cold. The satellite uses this temperature difference to produce electricity to power the craft.

Different material combinations may be a more efficient method of turning these temperature differences into power, according to Shidong Wang, a post-doctoral fellow in Curtarolo's lab and first author of the paper.

Thermoelectric materials can be created by combining powdered forms of different elements under high temperatures – a process known as sintering. Not only does the new program provide the recipes, but it does so for the extremely small versions of the particular elements, known as nanoparticles. Because of their miniscule size and higher surface areas, nanoparticles have properties unlike their bulk counterparts.

"Having this repository could change the way we produce ," Wang said. "With the current trial-and-error method, we may not be obtaining the most efficient combinations of materials. Now we have a theoretical background, or set of rules, for many of the combinations we now have. The approach can be used to tackle many other clean energy related problems."

The Duke researchers believe that the use of – which the new database should help fuel – could prove especially effective in cooling microdevices, such as laptop computers.

Explore further: Quantum Dot Thin Films With Goal to Increase Thermoelectric Efficiencies

Related Stories

Promising new material that could improve gas mileage

October 9, 2008

With gasoline at high prices, it's disheartening to know that up to three-quarters of the potential energy you are paying for is wasted. A good deal of it goes right out the tailpipe instead of powering your car.

Explained: Thermoelectricity

April 27, 2010

(PhysOrg.com) -- Thermoelectricity is a two-way process. It can refer either to the way a temperature difference between one side of a material and the other can produce electricity, or to the reverse: the way applying an ...

Microwave ovens a key to energy production from wasted heat

September 20, 2011

More than 60 percent of the energy produced by cars, machines, and industry around the world is lost as waste heat – an age-old problem - but researchers have found a new way to make "thermoelectric" materials for use ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.