Novel polymers release their drug cargo in response to body temperature

Dec 23, 2011 By Lee Swee Heng
Credit: iStockphoto.com/saffetucuncu

A critical step in advancing medical treatment is the development of novel drug delivery methods. While a simple tablet, taken by the patient with a sip of water, may be the easiest way to administer a drug, this may not always be the most suitable. Some drugs are subjected to degradation by the body, while others, such as cancer medications, can be more effective if they are delivered directly to the diseased tissue site. Such a delivery could improve the effectiveness of the treatment and potentially reduce side effects.

Yiyan Yang and Jeremy Tan from the A*STAR Institute of Bioengineering and Nanotechnology, working in collaboration with researchers from the IBM Almaden Research Center and Stanford University in the USA, have reported the preparation of biodegradable, water-soluble polymers that can be loaded with the cancer drug and injected directly into tumor tissues. Warming to body temperature causes the release of the therapeutic cargo with the system showing improvement in killing over treatment with the drug alone.

Rather than being made from repeating units of a single monomer, the polymers described are a type of —a polymer with one block that contains hydrophilic and hydrophobic groups and another block that contains hydrophobic groups. It is through the careful balance between these groups that the temperature-responsive property of the polymer is achieved.

To make the copolymers, Yang and co-workers used the process of living polymerization, which allows the polymer chains to keep growing until the supply of monomer is exhausted. When more monomers are added, polymerization will restart. The approach allows polymers with different sized blocks of hydrophilic and hydrophobic groups to be built easily to optimize the properties. It also results in polymers with a narrow distribution of molecular weights—an important factor in producing polymers with consistent properties throughout a sample.

Thermoresponsive polymers have been studied before, with one of the most intensively investigated being poly(N-isopropylacrylamide) (PNIPAAm), which was first synthesized in the 1950s. The critical difference in the new polymers described by Yang and co-workers is that they are both non-toxic and biodegradable. “After these polymers performed their task of delivering their important cargos, they should break down and be excreted without significant additional side effects,” says Yang. “We are now planning to further work with the IBM Almaden Research Center and other industrial partners to evaluate the in vivo toxicity and efficacy of this system for the delivery of therapeutics.”

Explore further: Researchers discover a way to cause surface coating properties to change in less than a second

More information: Research article in Biomaterials

Provided by Agency for Science, Technology and Research (A*STAR)

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Clicking synthetic and biological molecules together

Feb 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

CSIRO grants global license for new polymer technology

Jul 06, 2010

CSIRO has signed a global licensing agreement for its patented RAFT technology. Reversible Addition-Fragmentation chain Transfer (or RAFT) technology is an elegant and powerful polymerisation process that ...

Recommended for you

The fluorescent fingerprint of plastics

42 minutes ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

4 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

5 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

6 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

6 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0