Jumping droplets take a lot of heat

Dec 12, 2011

Microscopic water droplets jumping from one surface to another may hold the key to a wide array of more energy efficient products, ranging from large solar panels to compact laptop computers.

Duke University engineers have developed a new way of producing thermal to regulate by bleeding it away or keeping it in. The method solves several shortcomings of existing devices.

While thermal diodes can be made from , these solid-state diodes are not nearly as effective as "phase-change" thermal diodes that rely on vaporization and condensation to transport heat. Existing phase-change diodes can transfer over a hundred times more heat in the forward direction than the reverse, but with major limitations: they are dependent on gravity or restricted to a one-way direction. This limits their use in mobile electronics or solar panels.

The Duke engineers believe they have figured out a way to overcome these limitations by exploiting tiny self-propelled , or condensate, that can jump from a water-repellent, or superhydrophobic, to a highly absorbent, or superhydrophilic, surface, but not the other way around.

The results of the Duke experiments were published online in the journal Applied Physical Letters.

Videotaping the jumping motion of the droplets, Chuan-Hua Chen, assistant professor of mechanical engineering and materials science, found that the water literally jumped straight up and off a water-repellant surface. In current experiments, he and his colleagues placed a super-absorbent plate across from the water-repelling one, creating an asymmetry that is crucial to forming heat flow in their thermal diode.

"When the water-repellant surface is colder than the super-absorbent surface, the is very effective, much like sweat taking away . When the repellant surface is hotter, the is blocked and the diode behaves like a double-paned window," Chen said.

Typical phase-change thermal diodes rely on evaporating water to transfer heat from one surface to another, with gravity pulling the subsequent condensation down to restart the cycle again. This kind of "thermosyphon" is in use in the Alaskan oil pipeline to prevent the heat in the pipes from melting the permafrost.

"Because the jumping droplets in our system are very small, gravity has a negligible effect on them," so they can be oriented in any direction, Chen said. This new approach is also scalable, which means technology based on this design can be used for thermal management of devices as small as a computer chip and as large as a building roof, he said.

The thermal diodes, he said, could be used in devices ranging from energy-efficient to smart "skins" of thermally adaptive buildings. During summer, a thermal diode panel on a building could let heat escape out but also prevent it from creeping in. Or, in space vehicles, they could be used to regulate thermal fluctuations from night to day, or even to harvest solar energy for powering satellites, he said.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

Related Stories

Nanoparticles improve solar collection efficiency

Apr 05, 2011

Using minute graphite particles 1000 times smaller than the width of a human hair, mechanical engineers at Arizona State University hope to boost the efficiency -- and profitability -- of solar power plants.

Solar-thermal flat-panels that generate electric power

May 01, 2011

(PhysOrg.com) -- High-performance nanotech materials arrayed on a flat panel platform demonstrated seven to eight times higher efficiency than previous solar thermoelectric generators, opening up solar-thermal ...

Turning Arizona's dry heat into a comfy chill

Oct 14, 2011

An innovative solar-thermal heating and cooling system installed on top of the UA's Student Recreation Center is expected to harvest almost 200 million kilowatt hours of solar energy per year – enough ...

Solar panels keep buildings cool

Jul 18, 2011

Those solar panels on top of your roof aren't just providing clean power; they are cooling your house, or your workplace, too, according to a team of researchers led by Jan Kleissl, a professor of environmental ...

Device can heat home, save money

Apr 19, 2011

(PhysOrg.com) -- A new polymer-based solar-thermal device is the first to generate power from both heat and visible sunlight – an advance that could shave the cost of heating a home by as much as 40 percent.

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0