A new spin in diamonds for quantum technologies

December 20, 2011

(PhysOrg.com) -- To explore the future potential of diamonds in quantum devices, researchers from Macquarie University have collaborated with the University of Stuttgart and University of Ulm in Germany towards developing new sensors based on the common defect found in the diamond structure known as the nitrogen-vacancy (NV) center.

These sensors measure weak magnetic and electric fields at the and will become important in the future development of devices and electrical and .

“The NV centre is a favourable system for quantum engineering and measurement techniques which we hope to exploit,” says Professor Jason Twamley.

Known for their durability and structural strength, diamonds have been used in variety of modern mechanical industries over the years. Scientists are only now just beginning to explore some of the properties in diamonds that may be useful in the next generation of .

It has been understood for some time that nitrogen-vacancy in diamonds holds immense possibility for quantum technologies but now for the first time, researchers have been able to make substantial headway in improving the sensitivity and high dynamic range of the sensors using a single electron spin in an NV centre. The theoretical protocol was developed by Macquarie graduate student Ressa Said and then was experimentally implemented by German team based at Stuttgart and Ulm, primarily by PhD student Gerarld Waldherr from Stuttgart.

“We have demonstrated improved magnetic field sensing and accuracy. This will become even more important for future research into quantum engineering and measurement techniques,” says Twamley.

Read the full paper 'High-dynamic-range magnetometry with a single nuclear spin in diamond' published by Nature Nanotechnology.

Explore further: Dark spins light up

Related Stories

Dark spins light up

October 25, 2005

Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Physics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen ...

Diamonds and the holy grail of quantum computing

June 29, 2010

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time ...

The diamond’s quantum memory

August 10, 2011

For years, quantum computers have been the holy grail of quantum technology. When a normal computer has to solve a number of problems, it can only execute them one after the other. In contrast, a quantum computer could occupy ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.