Researchers use yeast to help piece together human genome sequence jigsaw

Nov 17, 2011
researchers use yeast to help piece together human genome sequence jigsaw

Using yeast as a model, a team of Spanish researchers has made predictions about how individuals differ from one another by analysing genome sequences.

Writing in the , the researchers emphasise that their findings have important implications for the future of personalised medicine. If scientists can better understand which genes are important to a particular process, it is easier to make accurate predictions about an individual's biological make-up.

We are all made up of over 20,000 genes, and in each of us, several thousand of these genes carry . Scientists don't yet know what happens when most are altered, which means they can't yet make any predictions about based on . In practice, this means that for most common human diseases, which genes are important is something that remains unknown. Consequently, a scientist can't tell whether an individual will develop a condition based on his or her DNA sequence.

To confront this problem head on and assess whether it is possible to make useful predictions about the biology of individuals, the Spanish researchers carried out tests on , a species commonly studied as a 'model organism' by researchers the world over.

'The key point is that in a , we can test how good our predictions are. We have a much better idea of the genes that are important for each process, and so we can really test whether we can make useful predictions about the biology of individuals, such as whether they are affected by a drug,' says one of the study authors, Ben Lehner from the Centre for Genomic Regulation (CRG) in Barcelona, Spain. 'In yeast we can make predictions, and then we can use a large number of fast and cheap experiments to test whether these predictions are correct. This is very important - to be able to experimentally test how well prediction methods actually work.'

The team evaluated predictions about the phenotypes of 19 varieties of yeast. The first challenge the Spanish researchers faced was determining which of the approximately 3,000 mutated genes in each organism are actually altered. They then needed to predict whether each individual was likely to be abnormal for a particular phenotype such as growth in a different environmental condition.

The study results show that there are at least two necessary conditions for such predictions to be made: good knowledge about which genes are important for a phenotype, and experiments performed on individuals under controlled conditions to evaluate how accurate the predictions are. As this remains tricky in humans due to the many different variables involved, and the fact that most genes that affect particular and diseases remain unidentified, the team stress the importance of carrying out further studies on simple model organisms like budding yeast.

'The most important thing is to have comprehensive knowledge about the genes that are important for a particular phenotype. It is not possible to predict accurately if we only know a subset of the that are important,' says another study author, Rob Jelier, also from the CRG. 'However, we found that, when our understanding of gene function is good, quite accurate predictions can be made using a surprisingly simple genetic model. This provides some hope for the future of personalised and predictive medicine in humans.'

Explore further: New patenting guidelines are needed for biotechnology

More information: Jelier, R. et al. (2011) Predicting phenotypic variation in yeast from individual genome sequences. Nature Genetics. DOI: 10.1038/ng.1007

add to favorites email to friend print save as pdf

Related Stories

Learning the language of gene expression

Jan 19, 2007

Researchers have taken a major step towards understanding the language of gene regulation in the fruitfly Drosophila and they expect the technique to be rapidly applicable to understanding the effects of genome variation ...

Cornell Finds Natural Selection in Humans

Oct 26, 2005

The most detailed analysis to date of how humans differ from one another at the DNA level shows strong evidence that natural selection has shaped the recent evolution of our species, according to researchers from Cornell ...

Recommended for you

New alfalfa variety resists ravenous local pest

17 minutes ago

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

New patenting guidelines are needed for biotechnology

18 hours ago

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

Rainbow trout genome sequenced

20 hours ago

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

User comments : 0

More news stories

In the 'slime jungle' height matters

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

New alfalfa variety resists ravenous local pest

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

Former Iron Curtain still barrier for deer

The Iron Curtain was traced by an electrified barbed-wire fence that isolated the communist world from the West. It was an impenetrable Cold War barrier—and for some inhabitants of the Czech Republic it ...

Rainbow trout genome sequenced

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

Robot scouts rooms people can't enter

(Phys.org) —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...