Researchers use yeast to help piece together human genome sequence jigsaw

Nov 17, 2011
researchers use yeast to help piece together human genome sequence jigsaw

Using yeast as a model, a team of Spanish researchers has made predictions about how individuals differ from one another by analysing genome sequences.

Writing in the , the researchers emphasise that their findings have important implications for the future of personalised medicine. If scientists can better understand which genes are important to a particular process, it is easier to make accurate predictions about an individual's biological make-up.

We are all made up of over 20,000 genes, and in each of us, several thousand of these genes carry . Scientists don't yet know what happens when most are altered, which means they can't yet make any predictions about based on . In practice, this means that for most common human diseases, which genes are important is something that remains unknown. Consequently, a scientist can't tell whether an individual will develop a condition based on his or her DNA sequence.

To confront this problem head on and assess whether it is possible to make useful predictions about the biology of individuals, the Spanish researchers carried out tests on , a species commonly studied as a 'model organism' by researchers the world over.

'The key point is that in a , we can test how good our predictions are. We have a much better idea of the genes that are important for each process, and so we can really test whether we can make useful predictions about the biology of individuals, such as whether they are affected by a drug,' says one of the study authors, Ben Lehner from the Centre for Genomic Regulation (CRG) in Barcelona, Spain. 'In yeast we can make predictions, and then we can use a large number of fast and cheap experiments to test whether these predictions are correct. This is very important - to be able to experimentally test how well prediction methods actually work.'

The team evaluated predictions about the phenotypes of 19 varieties of yeast. The first challenge the Spanish researchers faced was determining which of the approximately 3,000 mutated genes in each organism are actually altered. They then needed to predict whether each individual was likely to be abnormal for a particular phenotype such as growth in a different environmental condition.

The study results show that there are at least two necessary conditions for such predictions to be made: good knowledge about which genes are important for a phenotype, and experiments performed on individuals under controlled conditions to evaluate how accurate the predictions are. As this remains tricky in humans due to the many different variables involved, and the fact that most genes that affect particular and diseases remain unidentified, the team stress the importance of carrying out further studies on simple model organisms like budding yeast.

'The most important thing is to have comprehensive knowledge about the genes that are important for a particular phenotype. It is not possible to predict accurately if we only know a subset of the that are important,' says another study author, Rob Jelier, also from the CRG. 'However, we found that, when our understanding of gene function is good, quite accurate predictions can be made using a surprisingly simple genetic model. This provides some hope for the future of personalised and predictive medicine in humans.'

Explore further: Chickens to chili peppers: Scientists search for the first genetic engineers

More information: Jelier, R. et al. (2011) Predicting phenotypic variation in yeast from individual genome sequences. Nature Genetics. DOI: 10.1038/ng.1007

add to favorites email to friend print save as pdf

Related Stories

Learning the language of gene expression

Jan 19, 2007

Researchers have taken a major step towards understanding the language of gene regulation in the fruitfly Drosophila and they expect the technique to be rapidly applicable to understanding the effects of genome variation ...

Cornell Finds Natural Selection in Humans

Oct 26, 2005

The most detailed analysis to date of how humans differ from one another at the DNA level shows strong evidence that natural selection has shaped the recent evolution of our species, according to researchers from Cornell ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

11 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.