USC team develops promising polymer for solar cells

Nov 07, 2011 by Bob Yirka report
Molecular structures of DTS(PTTh2)2 and PC70BM. Image credit: Nature Materials (2011) doi:10.1038/nmat3160

( -- Currently, most solar cells are based on silicon which for the most part, necessitates a rigid structure. This isn’t always ideal as some applications would benefit by material that is more bendable. Also, because of the way silicon solar based cells are made, they tend to cost more than a lot of people are willing to pay. If a way could be found to mass produce solar cells very cheaply, its likely solar cells would be installed in far more places and costs for energy would go down.

One way to do this, researchers believe, is to create a based material that could be used instead of . Such material would cost less to produce and have sufficient bendiness that it could be printed onto bendable surfaces in much the same way newspapers are mass printed, i.e. via giant rollers. Up to now though, figuring out how to create such a polymer that is as efficient at converting sunlight into energy as silicon-based cells, hasn’t really worked out.

Now though, a team working out of USC, headed by Alan Heeger, who along with Guillermo Bazan won the Nobel Prize in Physics back in 2000 for groundbreaking work they did on polymer cells, believe they have made another breakthrough. In their paper, published in Nature Materials, they say they’ve figured out a way to use an organic material with a low molecular weight (small molecule) to produce a solar cell that is every bit as efficient as current silicon technology.

The small molecule technology came about as the result of work done by Bazan, who used theory and lots of trial and error to produce just the right material; one that could, unlike many others that had been tried, be formed into a layer that could be applied to other . Heeger then took the lead in applying the new material in a solar cell. The end result the team says, is a solar cell capable of matching the 6.7% energy efficiency of silicon cells. And not only that, they believe with some tweaking, they can get it to 9%.

Unfortunately, there is a dark cloud looming ahead, and that is because the team isn’t sure just yet if the new material will work as designed once it’s ramped up to commercial size. In the past, when polymers have been sized up, their efficiencies went down.

Explore further: Materials scientists and mathematicians benefit from newly crafted polymers

More information: Solution-processed small-molecule solar cells with 6.7% efficiency, Nature Materials (2011) doi:10.1038/nmat3160

Organic photovoltaic devices that can be fabricated by simple processing techniques are under intense investigation in academic and industrial laboratories because of their potential to enable mass production of flexible and cost-effective devices1, 2. Most of the attention has been focused on solution-processed polymer bulk-heterojunction (BHJ) solar cells3, 4, 5, 6, 7. A combination of polymer design, morphology control, structural insight and device engineering has led to power conversion efficiencies (PCEs) reaching the 6–8% range for conjugated polymer/fullerene blends8, 9. Solution-processed small-molecule BHJ (SM BHJ) solar cells have received less attention, and their efficiencies have remained below those of their polymeric counterparts10. Here, we report efficient solution-processed SM BHJ solar cells based on a new molecular donor, DTS(PTTh2)2. A record PCE of 6.7% under AM 1.5 G irradiation (100 mW cm−2) is achieved for small-molecule BHJ devices from DTS(PTTh2)2:PC70BM (donor to acceptor ratio of 7:3). This high efficiency was obtained by using remarkably small percentages of solvent additive (0.25% v/v of 1,8-diiodooctane, DIO) during the film-forming process, which leads to reduced domain sizes in the BHJ layer. These results provide important progress for solution-processed organic photovoltaics and demonstrate that solar cells fabricated from small donor molecules can compete with their polymeric counterparts.

Related Stories

Printing solar cells

Jun 29, 2011

Australian researchers have invented nanotech solar cells that are thin, flexible and use 1/100th the materials of conventional solar cells.

Nanostructures improve solar cell efficiency

May 26, 2011

To make solar cells a competitive alternative to other renewable energy sources, researchers are investigating different alternatives. A step in the right direction is through new processes that change the ...

Double solar world record

Jul 07, 2011

( -- A world record double by UNSW solar cell researchers promises to make solar power more affordable, with world-beating new technology delivering substantial efficiency gains at minimal extra ...

Recommended for you

Faster, cheaper tests for sickle cell disease

7 hours ago

Within minutes after birth, every child in the U.S. undergoes a battery of tests designed to diagnose a host of conditions, including sickle cell disease. Thousands of children born in the developing world, ...

Simulations for better transparent oxide layers

10 hours ago

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

The chemistry of beer and coffee

14 hours ago

University of Alabama at Birmingham professor Tracy Hamilton, Ph.D., is applying his chemistry expertise to two popular beverages: beer and coffee.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 07, 2011
How long is the life span and how good is the stability of this polymere material?