Tropical forests are fertilized by air pollution

Nov 03, 2011
Even remote tropical forests, like this forest in Panama, are affected by nitrogen pollution. Credit: Marcos Guerra, STRI

Scientists braved ticks and a tiger to discover how human activities have perturbed the nitrogen cycle in tropical forests. Studies at two remote Smithsonian Institution Global Earth Observatory sites in Panama and Thailand show the first evidence of long-term effects of nitrogen pollution in tropical trees.

" is fertilizing with one of the most important nutrients for growth," said S. Joseph Wright, staff scientist at the Smithsonian Tropical Research Institute in Panama. "We compared nitrogen in leaves from dried specimens collected in 1968 with nitrogen in samples of new leaves collected in 2007. Leaf nitrogen concentration and the proportion of heavy to light nitrogen isotopes increased in the last 40 years, just as they did in another experiment when we applied fertilizer to the forest floor."

Tropical forests are fertilized by air pollution
The Smithsonian's Barro Colorado Island was the site of the first large-scale, long-term forest dyanmics plots. Now there are 42 forest dynamics plots worldwide that use the same methodology, the Smithsonian Institution Global Earth Observatory system managed by the Center for Tropical Forest Science. Credit: Marcos Guerra, STRI

Nitrogen is an element created in stars under and pressures. Under normal conditions, it is a colorless, odorless gas that does not readily react with other substances. Air consists of more than 75% nitrogen. But nitrogen also plays a big role in life as an essential component of proteins. When nitrogen gas is zapped by lightning, or absorbed by soil bacteria called "nitrogen fixers," it is converted into other "active" forms that can be used by animals and plants. Humans fix nitrogen by the Haber process, which converts into ammonia—now a principal ingredient in fertilizers. Today, nitrogen fixation by humans has approximately doubled the amount of reactive nitrogen emitted.

Nitrogen comes in two forms or isotopes: atoms that have the same number of protons but different numbers of neutrons. In the case of nitrogen, the isotopes are 14N and 15N, although only about one in 300 nitrogen atoms is the heavier form. Imagine nitrogen in the ecosystem like a bowl of popcorn. Normally the ratio of popped (light) to unpopped (heavy) kernels stays the same, but when someone starts to eat the popcorn, the lighter, popped kernels get used up first, increasing the ratio of heavy to light kernels (or 15N/14N in the case of the ecosystem). Light nitrogen is lost through nitrate leaching and as gases such as N2, and various forms of nitrous oxides or "noxides," some of which can be important greenhouse gases. In the fertilization study in Panama, mentioned earlier, N2O emissions were tripled.

"Tree rings provide a handy timeline for measuring changes in wood nitrogen content," said Peter Hietz from the Institute of Botany at the University of Natural Resources and Life Sciences in Vienna, who faced down a tiger when sampling trees in a monsoon forest on the Thailand-Myanmar border. "We find that over the last century, there's an increase in the heavier form of nitrogen over the lighter form, which tells us that there is more nitrogen going into this system and higher losses. We also got the same result in an earlier study of tree rings in Brazilian rainforests, so it looks like nitrogen fixed by humans now affects some of the most remote areas in the world."

"The results have a number of important implications," said Ben Turner, staff scientist at STRI. "The most obvious is for trees in the bean family (Fabaceae), a major group in tropical forests that fix their own nitrogen in association with . Increased nitrogen from outside could take away their competitive advantage and make them less common, changing the composition of tree communities."

"There are also implications for global change models, which are beginning to include nitrogen availability as a factor affecting the response of plants to increasing atmospheric carbon dioxide concentrations," said Turner. "Most models assume that higher nitrogen equals more plant growth, which would remove carbon from the atmosphere and offset future warming. However a challenge for the models is that there is no evidence that trees are growing faster in Panama, despite the long-term increases in nitrogen deposition and atmospheric carbon dioxide."

Decades of atmospheric deposition have caused major changes in the plants and soils of temperate forests in the U.S. and Europe. Whether tropical forests will face similar consequences is an important question for future research.

Explore further: Nicaragua: Studies say canal impact to be minimal

More information: P. Hietz, B.L. Turner, W. Wanek, A. Richter, C.A. Nock, S.J. Wright. Long-term change in the nitrogen cycle of tropical forests. Science. 4 Nov. (2011)

Provided by Smithsonian Tropical Research Institute

5 /5 (6 votes)

Related Stories

Researchers explain nitrogen paradox in forests

Jun 18, 2008

Nitrogen is essential to all life on Earth, and the processes by which it cycles through the environment may determine how ecosystems respond to global warming. But certain aspects of the nitrogen cycle in temperate and tropical ...

Greenhouse gases from forest soils

Apr 12, 2011

Reactive nitrogen compounds from agriculture, transport, and industry lead to increased emissions of the greenhouse gas nitrous oxide (N2O) from forests in Europe. Nitrous oxide emission from forest soils is at least twice ...

Forest canopies help determine natural fertilization rates

May 29, 2008

In this week’s issue of Science, a team of researchers from the United States and Sweden report on a newly identified factor that controls the natural input of new nitrogen into boreal forest ecosystems. Nitrogen is the ...

Recommended for you

3Qs: Game theory and global climate talks

4 hours ago

Last week, China and the United States announced an ambitious climate agreement aimed at reducing carbon emissions in both countries, a pledge that marks the first time that China has agreed to stop its growing emissions. ...

From hurricanes to drought, LatAm's volatile climate

5 hours ago

Sixteen years ago, Teodoro Acuna Zavala lost nearly everything when Hurricane Mitch ravaged his fields, pouring 10 days of torrential rains on Central America and killing more than 9,000 people.

Nicaragua: Studies say canal impact to be minimal

19 hours ago

Officials said Thursday that studies have determined a $40 billion inter-oceanic canal across Nicaragua will have minimal impact on the environment and society, and construction is to begin next month.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

martinwolf
not rated yet Nov 03, 2011
explains my larger tomatoes as the years pass in part..:)
HealingMindN
5 / 5 (1) Nov 03, 2011
Shouldn't the title more correctly be, "Tropical forests are fertilized by Nitrogen?"

Dare I mention what is fertilizing this article?
deepsand
1 / 5 (3) Nov 05, 2011
Shouldn't the title more correctly be, "Tropical forests are fertilized by Nitrogen?"

Did you miss the part about WHICH nitrogen, and it's source?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.