Terahertz boost detection

November 15, 2011 By Cécelia Carron
Credit: 2011 EPFL

Swissto12 -- an EPFL spin-off -- could help boost the performance of detection systems and create new antennas for mobile telephony and on-board satellite systems thanks to an innovative transmission system that takes advantage of a previously under-utilized wavelength: the terahertz.

What’s the common denominator between collecting meteorological data from space, searching for flaws on an aircraft fuselage, or using certain medical diagnostics? With terahertz waves, the targets of all of these could be more rapidly and precisely detected. These waves, whose frequency lies between the infrared band and the microwave band on the light spectrum, have the capability of characterizing surfaces or identifying the components of solids, liquids, even gases. So far considered harmless to human beings, terahertz waves have only been the subject of applied research for a few years. But Swissto12 is changing that.

"We are the first researchers to propose such performant transmission systems in the field of terahertz," explains Alessandro Macor, co-founder of Swissto12 with Emile de Rijk and Jean-Philippe Ansermet. The company, created only four months ago, offers a revolutionary system for guiding terahertz waves, or “T-rays.”

Swissto12’s secret is hidden in a seemingly innocuous metal tube with thousands of micro-washers of a particular diameter and profile stacked inside. Manufactured using high-tech materials, such as titanium, they direct the T-rays toward their target. This product paves the way for a much wider use of , enabling their propagation with minimal losses.

With the prototyping phase of its products complete, the start-up, located in the Scientific Park at Ecublens, was recently awarded two prizes designed to help young start-ups: Venture Kick and Innogrant. “We are already cooperating with several big companies that are testing new products functioning with T-rays,” confirms Alessandro Macor. The production is based on the know-how of companies in the region, in particular those that produce small watch-making parts and those working in precision engineering. The next stage aims at a further miniaturization of the system.

Explore further: Terahertz-controlling device is built

Related Stories

Terahertz-controlling device is built

December 4, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Researchers mine the 'Terahertz gap'

February 4, 2008

Research underway at the University of Leeds will provide a completely fresh insight into the workings of nano-scale systems, and enable advances in the development of nano-electronic devices for use in industry, medicine ...

Team develops new metamaterial device

February 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Graphene may open the gate to future terahertz technologies

September 12, 2011

Nestled between radio waves and infrared light is the terahertz (THz) portion of the electromagnetic spectrum. By adding a nanoscale bit of graphene, researchers have found a better way to tune radiation for a THz transmitter.

Recommended for you

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Funneling fundamental particles

August 24, 2016

Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. ...

Engineers discover a high-speed nano-avalanche

August 24, 2016

Charles McLaren, a doctoral student in materials science and engineering at Lehigh University, arrived last fall for his semester of research at the University of Marburg in Germany with his language skills significantly ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.