New technique enables study of 'challenging' proteins

Nov 14, 2011

Researchers from Hull, Bristol and Frankfurt have shown that a new technique for identifying molecular structure can be used effectively on small samples of biological proteins, particularly proteins that are targeted for drug development.

The technique, an enhanced form of (NMR) spectroscopy, could enable the structure of a protein to be identified within hours, rather than weeks or months, radically speeding up the process of . The findings are published online in the .

Dr Mark Lorch from the University of Hull, who led the research, explains: " are important targets for the pharmaceutical industry, but they're very difficult to create in large quantities. For some, NMR isn't feasible at all, but even when it is, only small amounts of data can be gained from each small sample, which makes the whole process of identifying the structure very time consuming and expensive.

"Using this technique, we were able to get significant structural data from a small sample of a protein in just 20 hours of NMR time. This is the first time the technique has been shown to work on the size of sample that can be realistically created from any biological protein."

The researchers, from the Universities of Hull, Bristol and Goethe University, used a method known as dynamic nuclear (DNP), which boosts the number of nuclei that can be measured through NMR and so increases the signal picked up from the protein.

Although DNP has been used before on large sample sizes of well-studied proteins, the researchers are the first to show its effectiveness in studying a more challenging protein, opening the door to the study of that are currently inaccessible to conventional NMR.

The study focused on the Sec translocon protein, which transports other proteins either across or into . This process is triggered when a signal peptide called LamB binds with Sec translocon and the researchers wanted to identify structural information on how the two interact. This would have been impossible through traditional NMR, as the signal peptide makes up such a small part of the sample to be studied. However, using DNP to enhance the signal from the peptide, the researchers were able to get significant information in a very short period of time.

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Rotating light provides indirect look into the nucleus

Nov 30, 2010

Nuclear magnetic resonance (NMR) is one of the best tools for gaining insight into the structure and dynamics of molecules because nuclei in atoms within molecules will behave differently in a variety of chemical environments. ...

New technique boosts protein NMR imaging speeds

Feb 09, 2009

Solid-state nuclear magnetic resonance, or SSNMR, is a valuable tool to image and analyze the chemical makeup of proteins and other biomolecules. But the imaging process is time-consuming and requires large amounts of costly ...

First NMR Signal of a Copper Site in Azurin Obtained

Feb 18, 2010

(PhysOrg.com) -- Metalloproteins, such as the copper-containing azurin, play a major role in catalyzing electron transfer in cellular reactions. Understanding how their structure relates to function can give ...

Magnetic Resonance Now Also Comes In Tiny Quantities

Sep 29, 2009

(PhysOrg.com) -- It is now possible to analyse very small samples using Nuclear Magnetic Resonance. Thanks to a specially constructed detector, a 'stripline', greater sensitivity can be achieved while maintaining the same ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 0