Research team shows skin stem cells run by circadian clock

Nov 10, 2011 by Bob Yirka report

( -- Most everyone has heard of the circadian rhythm or the internal clock that people have that tells them when to do things, such as go to sleep. In fact, researchers have actually located where this “clock” resides in the human brain. It’s in the suprachiasmatic nuclei, a pair of distinct groups of cells located in the hypothalamus. So, that would seem the end of it right, except it’s not; new research by a group in Spain has found that individual stem cells in skin have their own circadian clock of sorts that tells the skin when to do certain thing, like regenerate. The team led by Peggy Janich and Salvador Aznar Benitah, has published the results of their study in Nature.

Janich, Benitah, et al, knew that mice grew new skin mostly at night, but weren’t sure how exactly that came about. To find out they studied a protein produced in the skin called Per1, which they suspected had clock-like abilities and that it impacted the expression of signaling proteins which tell other cells when to start doing their thing - such as growing new cells. To see what it was doing they linked the Per1 cell with another protein that goes fluorescent when exposed to certain environmental factors. This allowed them to see when the Per1 cells were active or dormant. In watching the cells they found they oscillated over regular 24 time period. They also found that the amount of brightness shown by the fluorescent protein correlated directly with the amount of signaling protein expressed.

Furthermore, the group found that the Per1 cells appear to be regulated, at least in part, by the main body clock in the brain. This they found out by removing a clock protein called Bmal1 from the test mice. In its absence, the Per1 cells failed to adhere to their circadian rhythm.

The researchers note that the skin in particular is more sensitive to external stimuli than many other body parts, due to its external nature. Thus, nature has had to allow for constant adjustment to keep it functioning properly. In this case, it appears the skin need to do different things during different times of the day. In the morning for example, new skin cells grown overnight need to replace those that have died. And the reason new grow at night is because that is when they are least susceptible to UV rays that can cause skin cancer.

Unfortunately, the authors note, it’s not quite as simple as all that because sometimes cells that are supposed to be timed by Bmal1 proteins seem to ignore them, and other times seem to act independently, thus leading to the conclusion that there are more factors at work in the timing of cell replication than just the circadian rhythm. Thus, as always, more research into how stem cells are regulated will need to be done to find out why this happens and what can be done about it in the situations where they lead to cancers.

Explore further: Sculpting a cell's backside: New protein found to help cells move from behind

More information: The circadian molecular clock creates epidermal stem cell heterogeneity, Nature (2011) doi:10.1038/nature10649

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.

Related Stories

Hormones tied to elderly sleep problems

Apr 12, 2011

( -- Have you ever wondered why grandma and grandpa head to bed early but are up with the sun every morning? A new study by Lucia Pagani and Steven A. Brown of the University of Zurich recently published in the ...

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

C. difficile needs iron, but too much is hazardous

14 hours ago

Those bacteria that require iron walk a tightrope. Iron is essential for their growth, but too much iron can damage DNA and enzymes through oxidation. Therefore, bacteria have machinery to maintain their ...

Researchers discover strong break on cell division

14 hours ago

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher ...

A checkpoint enzyme for flawless cell division

14 hours ago

The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg's research group at the Biozentrum, University of Basel, has ...

Together bacteria invade antibiotic landscapes

15 hours ago

Antibiotics kill bacteria – or at least they are supposed to, although unfortunately this does not always result in a cure. Scientists at TU Delft's Kavli Institute of Nanoscience have discovered that bacteria ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.