Team sequencing 1,000 fungal genomes

Nov 07, 2011
The Amanita mushroom, seen here growing in a forest in Oregon, is a fungus. The white material on the mushroom represents patches or warts that remain when, as part of its development, this type of fungus breaks through the tissue enclosing the entire button mushroom. Credit: Stajich lab, UC Riverside.

A 79-year-old collection of fungal cultures and the U.S. Forest Service's Northern Research Station are part of a team that will sequence 1,000 fungal genomes in the next 5 years.

Dan Lindner, a research plant pathologist with the Northern Research Station's Center for Forest Mycology Research (CFMR), is one of 13 scientists participating in the '1000 Fungal Genomes' project, which in collaboration with the Department of Energy's (DOE) Joint Institute will sequence two from every known fungal family. The project is a first step in creating an encyclopedia of all fungi, which will one day help researchers understand not only what they do, but how fungi operate.

The '1000 Fungal Genomes' project was one of 41 research projects awarded funding through the Department of Energy's 2012 Community Sequencing Program (CSP), the DOE announced November 3.

The CFMR will provide approximately 200 of the 1,000 species that will be sequenced, with the remaining 800 species provided by four other major culture collections from around the world. Established in 1932, the CFMR's culture collection includes 20,000 cultures from 1,600 species of fungi. "It's an incredible resource," Lindner said. "As far as we know, it's the world's largest collection of wood-inhabiting fungi."

The CFMR culture collection is comprised mainly of Basidiomycetes, or club fungi, which includes the types of fungi that form mushrooms. These fungi play many critical roles in forests, from species that protect tree roots to species that decompose wood to destructive forest pathogens that actively kill trees. Researchers at the CFMR will grow the fungi and isolate the DNA for sequencing by the DOE's Joint Genome Institute.

Fungi are prevalent, hard working, and largely unknown despite their importance to everything from carbon cycling to production of life-saving drugs, including "old-fashioned" wonder drugs such as as well as best sellers such as the cholesterol lowering and the immunosuppresant ciclosporins, which made organ transplants possible. Fungi are also needed for the production of quality of life products like chocolate, beer and specialty cheeses, such as brie and gorgonzola. There are an estimated 1 million to 1.5 million species of ; only about 100,000 species have a name. "They are so important in so many ways, and we have so much to learn about them," Lindner said. "We know the tip of the iceberg."

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Mold fungi can cure plants

Nov 01, 2011

We know them from our garden, from damp cellars or from the fridge - mold fungi can be found almost everywhere. Their success is due to their remarkable versatility:  depending on external conditions, ...

Could fungal collection hold the key to new life-saving drugs?

Jun 13, 2007

Scientists may be one step closer to finding new drugs to fight MRSA, cancers and other diseases, after CABI, a leading bioservices organisation announced that its fungal collection will be screened by the University of Strathclyde.

Breaking biomass better

Jul 12, 2010

One of the challenges in making cellulosic biofuels commercially viable is to cost-effectively deconstruct plant material to liberate fermentable energy-rich sugars. The U.S. Department of Energy (DOE) is ...

Tree-killing fungus officially named by scientists

Jun 30, 2008

The USDA Forest Service Southern Research Station (SRS) today announced that an SRS scientist and other researchers have officially named the fungus responsible for killing redbay and other trees in the coastal plains of ...

Breaking down cellulose without blasting lignin

Jul 14, 2011

Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus' capacity to bre ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.