Research team has developed a fully functional flexible memory

November 3, 2011
A KAIST research team has developed a fully functional flexible memory
This is a schematic of a fully functional flexible memory array on flexible substrates. Credit: KAIST

The team of Professor Keon Jae Lee (Department of Materials Science and Engineering, KAIST) has developed fully functional flexible non-volatile resistive random access memory (RRAM) where a memory cell can be randomly accessed, written, and erased on a plastic substrate.

Memory is an essential part in electronic systems, as it is used for data processing, information storage and communication with external devices. Therefore, the development of has been a challenge to the realization of flexible electronics.

This is an image of flexible memory wrapped on quartz rod. Credit: KAIST

Although several flexible memory materials have been reported, these devices could not overcome cell-to-cell interference due to their structural and material limitations. In order to solve this problem, switching elements such as transistors must be integrated with the memory elements. Unfortunately, most transistors built on (e.g., organic/oxide transistors) are not capable of achieving the sufficient performance level with which to drive conventional memory. For this reason, operation on a flexible substrate has not been realized thus far.

Recently, Prof. Lee's research team developed a fully functional flexible memory that is not affected by cell-to-cell interference. They solved the cell-to-cell interference issue by integrating a memristor (a recently spotlighted memory material as next-generation memory elements) with a high-performance single-crystal on . Utilizing these two advanced technologies, they successfully demonstrated that all memory functions in a matrix memory array (writing/reading/erasing) worked perfectly.

Prof. Lee said, "This result represents an exciting technology with the strong potential to realize all flexible electronic systems for the development of a freely bendable and attachable computer in the near future."

This result was published in the October online issue of the Nano Letters ACS journal.

Explore further: Sharp Develops Basic Technology for RRAM, Next-Generation Nonvolatile Memory

Provided by: The Korea Advanced Institute of Science and Technology (KAIST)

0 shares

Related Stories

Organic flash memory developed

December 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

10-minute plasma treatment improves organic memory performance

October 19, 2010

In its current early stage of development, digital memory circuits that use organic elements instead of silicon or other inorganic materials have a seemingly endless list of variables and options to consider, test, and optimize. ...

Cancer detection from an implantable, flexible LED

September 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might be a reality in ...

Recommended for you

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.