Shedding new light on supernova mystery

Nov 08, 2011
Detection of neutrinos from supernova 1987A strongly supports the gravitational core collapse theory of type II supernovae, but what re-energises the stalled shockwave to allow such an immense explosion to take place remains unknown. The emission of scalar gravitational waves from the neutron core of a collapsing heavy star may provide an explanation. (Credit: NASA)

( -- Physicists have a new theory on the mysterious mechanism that causes the explosion of massive, or core, stars. These ‘Type II supernovae’, the term given to exploding core stars, are huge and spectacular events – intriguing because for a short time they emit as much light as is normally produced by an entire galaxy. In fact, the enormous amount of energy they release is second only to the Big Bang itself. While there is general agreement on how the collapse of a core star begins, how the energy escapes from the star (the process that causes the explosion) is not fully understood. A paper published in Physics Letters B (November 3, 2011) offers a new theoretical explanation.

A core star collapses when it runs out of the nuclear fuel it depends on and folds in on itself in less than a second under its own huge weight. This process releases enormous amounts of gravitational , causing an explosion. A small fraction of the total energy released during a supernova Type II (collapse of a lone massive star that burns energy through fusion), is emitted as light, the kinetic energy of the exploding stellar envelope is 10 times greater again, but by far the most energy is carried away by neutrinos. It is by studying these neutrinos (among the most difficult particles to detect) that physicists have come to general agreement that gravitational collapse does start the Type II process.

Less understood is whether the outgoing pressure wave causing the - that soon becomes a huge shock wave - travels all the way out and ejects the outer part of the star. Simulations have shown that the prompt shock stalls at distances of about 300 km from the centre because of the immense energy required to keep its momentum. Further simulations have found that the shock could re-start if the electrons could absorb a small amount of energy - about 1% of the neutrino energy available.

Physicists at the University of Aberdeen, STFC’s Rutherford Appleton Laboratory, the University of Strathclyde and the Instituto Superior Técnico in Lisbon suggest in Physics Letter B that the solution to the Type II supernovae mystery might lie in a fundamental field long proposed by to answer many important questions. They claim that a component of gravity called the ‘scalar gravitational field’ may be the driving force behind the release of energy that causes the star to finally explode. The existence of scalar fields are predicted but have not yet been detected.

“Scalar fields, unlike electromagnetic fields do not have a direction. They are needed to explain inflation in the early universe and dark energy in cosmology. They are also being hunted at CERN’s Large Hadron Collider as the Higgs particle, giving rise to the origin of mass. In our case, we believe it is responsible for accelerating particles”, said Professor Bob Bingham from STFC and the University of Strathclyde.

“The theory is that emission of these scalar gravitational waves from the neutron core of a collapsing heavy star may re-energise the stalled shockwave”, added Dr Charles Wang from the University of Aberdeen.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: These scientists in the UK and Portugal have recently analysed the nonlinear coupling (a process by which energy is transferred from one system to another) to this scalar gravitational field. They found that under extreme conditions with strong time-varying gravity such as may be found in the interior of a newly-born neutron star, the scalar gravitational field may be stimulated by a parametric instability
(a form of coupling between energy sources). Parametric instabilities were initially studied by Lord Rayleigh over a century ago.

The theory is that emission of these scalar gravitational waves from the neutron core of a collapsing heavy star may re-energise the stalled shockwave. This theoretical possibility for a new mechanism, - a potential solution to the type II supernova mystery is in Physics Letters B, Vol 705 (2011), Pages 148 – 151.

Related Stories

Sounds of Star Death Near Middle C

Jan 24, 2006

Scientists have made the astonishing discovery that sound might drive supernovae explosions. Their computer simulations say that dying stars pulse at audible frequencies -- for instance, at about the F-note ...

Physicists Identify New Kind of Star

Apr 01, 2010

( -- Stars don't exactly ease into retirement, and for some stellar objects, the twilight years just got more complicated.

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Nov 08, 2011
Very spiritual... OK, we can read it...
not rated yet Nov 08, 2011
Wow I got nowhere with the calculus from the paper.
Pretty obvious the things do explode, so maybe more energy is produced in some way when the falling mass reaches the reflection point where it can no longer compress, or perhaps at this point the energy could be better transferred to the electrons from the neutrons. I always Imagined something akin to atomic weapons going off. Perhaps the pressure, and energy concentrations enables mass reactions we wouldn't expect to produce energy. Another thought may be the electrical/magnetic forces produced by the quickly moving mass in the presence of the already electrical/magnetic fields of the star raising up electron energies that way. Just a thought. Sorry no math.
1 / 5 (2) Nov 09, 2011
But what causes the multiple rings in the image?
5 / 5 (2) Nov 09, 2011
"But what causes the multiple rings in the image?"

Per wiki: "The three bright rings around SN 1987A are material from the stellar wind of the progenitor. These rings were ionized by the ultraviolet flash from the supernova explosion, and consequently began emitting in various emission lines. These rings did not "turn on" until several months after the supernova, and the turn-on process can be very accurately studied through spectroscopy."

In fact, a 2010 study using one of the 8.2m VLTs at ESO employed Integrated Field Spectroscopy to get an exquisite look at the physical processes occurring in the inner ring of SN 1987A: http://www.eso.or...1032.pdf

Also, a movie of Hubble images has been assembled that show the structural evolution of the inner ring over time as ejecta from the SN interacts with it: http://en.wikiped...tion.gif