New study shows very first stars not monstrous

Nov 10, 2011
Scientists are simulating how the very first stars in our universe were born. This diagram shows a still from one such simulation. The cube on the right is a blown up region at the center of the box on the left. Image credit: NASA/JPL-Caltech/Kyoto Univ.

(PhysOrg.com) -- The very first stars in our universe were not the behemoths scientists had once thought, according to new simulations performed at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Astronomers "grew" stars in their computers, mimicking the conditions of our . The simulations took weeks. When the scientists' concoctions were finally done, they were shocked by the results -- the full-grown stars were much smaller than expected.

Until now, it was widely believed that the first stars were the biggest of all, with masses hundreds of times that of our sun. The new research shows they are only tens of times the mass of sun; for example, the simulations produced one star that was as little as 43 .

"The first stars were definitely massive, but not to the extreme we thought before," said Takashi Hosokawa, an astronomer at JPL and lead author of the new study, appearing online Friday, Nov. 11 in the journal Science. "Our simulations reveal that the growth of these stars is stunted earlier than expected, resulting in smaller final sizes."

The consisted of nothing more than thin clouds of hydrogen and helium atoms. A few hundred million years after its birth, the first stars began to ignite. How these first stars formed is still a mystery.

Astronomers know that all stars form out of collapsing clouds of gas. Gravity from a growing "seed" at the center of the cloud attracts more and more matter. For so-called normal stars like our sun, this process is aided by heavier elements such as carbon, which help to keep the gas falling onto the budding star cool enough to collapse. If the cloud gets too hot, the gas expands and escapes.

But, in the early universe, stars hadn't yet produced heavy elements. The very first stars had to form out of nothing but hydrogen and helium. Scientists had theorized that such stars would require even more mass to form, to compensate for the lack of heavy elements and their cooling power. At first, it was thought the stars might be as big as one thousand times the mass of our sun. Later, the models were refined and the first stars were estimated to be hundreds of solar masses.

"These stars keep getting smaller and smaller over time," said Takashi. "Now we think they are even less massive, only tens of solar masses."

The team's simulations reveal that matter in the vicinity of the forming stars heats up to higher temperatures than previously believed, as high as 50,000 Kelvin (90,000 degrees Fahrenheit), or 8.5 times the surface temperature of the sun. Gas this hot expands and escapes the gravity of the developing star, instead of falling back down onto it. This means the stars stop growing earlier than predicted, reaching smaller final sizes.

"This is definitely going to surprise some folks," said Harold Yorke, an astronomer at JPL and co-author of the study. "It was standard knowledge until now that the first stars had to be extremely massive."

The results also answer an enigma regarding the first stellar explosions, called supernovae. When massive stars blow up at the end of their lives, they spew ashes made of heavier elements into space. If the very first stars were the monsters once thought, they should have left a specific pattern of these elements imprinted on the material of the following generation of stars. But, as much as searched the oldest stars for this signature, they couldn't find it. The answer, it seems, is that it simply is not there. Because the first weren't as massive as previously thought, they would have blown up in a manner akin to the types of stellar explosions that we see today.

"I am sure there are more surprises in store for us regarding this exciting period of the universe," said Yorke. "NASA's upcoming James Webb Space Telescope will be a valuable tool to observe this epoch of early star and galaxy formation."

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

Related Stories

Making massive stars

Sep 10, 2010

Massive stars -- those with more than about eight times the mass of the sun -- are arguably the most important actors in the universe. Much hotter and more luminous than the sun, they live only hundreds of ...

An abundance of small stars

Dec 10, 2010

(PhysOrg.com) -- Stars form from giant clouds of gas and dust in space, as the matter in these clouds comes together under the influence of gravity.

Making massive stars

Aug 29, 2011

How do massive stars form? Stars with more than about eight times as much mass as the sun are arguably the most important actors in the universe. Although they live only hundreds of millions of years, they ...

Simulating the Birth of Massive Stars

Mar 09, 2010

(PhysOrg.com) -- Astronomers have made great strides recently in understanding how modest stars - those like the sun or smaller -- are formed.

Study: First stars were massive, fast-spinning

Apr 27, 2011

The first stars that dotted the universe were not only immense, but probably also fast-spinning, according to a new study that sheds light on the nature of stellar evolution.

Planets Living on the Edge

Dec 17, 2008

(PhysOrg.com) -- Some stars have it tough when it comes to raising planets. A new image from NASA's Spitzer Space Telescope shows one unlucky lot of stars, born into a dangerous neighborhood. The stars themselves ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

20 hours ago

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1.3 / 5 (16) Nov 11, 2011
There were no "first" stars in our infinite, cyclic universe but the current cycle of the universe probably started expanding from a massive neutron star [1,2].

1. "Is the Universe Expanding?", The Journal of Cosmology 13, 4187-4190 (2011)

http://journalofc...102.html

2. "Neutron Repulsion", The APEIRON Journal, in press (2011)

http://arxiv.org/...2.1499v1

With kind regards,
Oliver K. Manuel
http://myprofile....anuelo09
Ethelred
5 / 5 (6) Nov 11, 2011
Oliver, your theory has problems, spam will not fix it

You insist there is such a thing as neutron repulsion. You insist it is strong enough to stop the formation of black holes, not just stellar black holes but ALL black holes no matter what the size. Also it you claim it is long ranged enough to sunder galaxies. Though you refuse to answer any question about its actual strength or range those claims make it clear that it MUST be more powerful than gravity per unit of mass even if the mass is mostly hydrogen atoms as we can see makes up most the mass in the in the Universe, based on your denial of Dark Matter that is.

It really doesn't require a great deal of effort to notice that there is a severe problem with that set of claims. They make galaxies, stars, even neutron stars, planets and pretty much everything held together by gravity impossible.>>

Please explain this contradiction of reality that is an inevitable conclusion based on your own claims for Neutron Repulsion

Ethelred
jsdarkdestruction
3.7 / 5 (3) Nov 12, 2011
Oliver Manuel's recent efforts to plaster Physorg.com and other public news sites with his theories and personal URLs are a bit puzzling, as scientists have a variety of publications available to communicate directly to each other in. My best guess is that he is desperately trying to prop up his legacy in light of his arrest in his university office on 7 charges of rape and sodomy based on allegations by 4 of his own children. The charges have been reduced to one count of felony attempted sodomy, not necessarily because of his innocence, but because of the statute of limitations. One can only guess how the recent charges and decades of family strife have affected his ability to reason rationally and to remain objective while defending his unpopular theories.

http://www.homefa...uel.html

http://mominer.ms...hildren/
Callippo
1 / 5 (3) Nov 12, 2011
Everyone, who respond to this copy&paste spammer instead of simple abuse reporting is giving him credibility and is actually helping him. So I recommend to downvote the people, who are responding to off-topic posts in the same way, like the original posts.
Anda
5 / 5 (2) Dec 19, 2011
Aether noise...