Sought-after magnetic properties in common alloy

November 4, 2011

In a paper published Nov. 2 in Nature Communications, a team of researchers led by University of Maryland's Ichiro Takeuchi, in collaboration with Stanford Synchrotron Radiation Lightsource's Apurva Mehta, reported the discovery of large magnetostriction in an iron/cobalt alloy — in other words, the alloy shows a mechanical strain when a magnetic field is applied.

This property is sought after in materials with good mechanical properties for microelectromechanical systems (MEMS), sensors and actuators. However, magnetostrictive materials are usually based on rare or difficult-to-obtain materials, so scientists have been looking for alternatives based on common, cheap and widely available elements.

The team was able to enhance the magnetostriction of the alloy by more than a factor of three, and it appears that the mechanism by which they were able to do this can be used to discover even better magnetostriction properties in of common metals. 

Explore further: Superelastic iron alloy could be used for heart and brain surgery

More information: Nature Communications 2, Article number: 518 doi:10.1038/ncomms1529

Related Stories

An impossible alloy now possible

February 26, 2009

What has been impossible has now been shown to be possible - an alloy between two incompatible elements. The findings are being published in this week's edition of Proceedings of the National Academy of Science, USA.

Under pressure, atoms make unlikely alloys

March 11, 2009

(PhysOrg.com) -- Ever since the Bronze Age, humans have experimented with combining different metals to create alloys with properties superior to either metal alone. But not all metals readily form alloys - for some pairs ...

Smart memory foam made smarter

September 24, 2009

Researchers from Northwestern University and Boise State University have figured out how to produce a less expensive shape-shifting "memory" foam, which could lead to more widespread applications of the material, such as ...

Japanese material scientists develop new superelastic alloy

July 1, 2011

(PhysOrg.com) -- Working out of Tokyo University, scientists in the Department of Materials Science, have developed a new metal alloy that unlike other “superelastic” alloys can resume its original shape in temperatures ...

New super strong alloy discovered

September 8, 2010

(PhysOrg.com) -- International team of researchers has discovered a new super-strength light alloy and had their key findings published in Nature Communications.

Recommended for you

High-precision magnetic field sensing

December 2, 2016

Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields. The sensor may find widespread use in medicine and other areas.

A friend of a friend is... a dense network

December 1, 2016

It's a familiar request in the digital age: one of your friends on social media has a friend who wants to be your friend. Frequent linking among friends of friends can cause a rapid increase in social network connectivity.

LIGO back online, ready for more discoveries

December 1, 2016

Today (November 30), scientists restarted the twin detectors of LIGO, the Laser Interferometer Gravitational-wave Observatory, after making several improvements to the system. Over the last year, they have made enhancements ...

Researchers take first look into the 'eye' of majoranas

December 1, 2016

Majorana fermions are particles that could potentially be used as information units for a quantum computer. An experiment by physicists at the Swiss Nanoscience Institute and the University of Basel's Department of Physics ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.