Single-walled carbon nanotubes may serve as ideal probing tips to study friction, lubrication and wear at the microscale

November 29, 2011 By Lee Swee Heng
Atomistic simulations show that short, capped single-walled carbon nanotubes (red) can elucidate the tribological properties of graphene surfaces. Credit: 2011 Elsevier

Studying microscopic interactions at single asperities is vital for the understanding of friction and lubrication at the macroscale. Surface probe instruments with carbon nanotube tips may enable such investigations, as now demonstrated in a theoretical study led by Ping Liu and Yong-Wei Zhang at the A*STAR Institute of High Performance Computing. The researchers showed that short, single-walled, capped carbon nanotubes are able to capture the frictional characteristics of graphene with atomic resolution.

“For an ideal probing tip, its dimension should be as small as possible, its rigidity should be as large as possible, its geometry should be well-defined, and it should be chemically inert,” explains Liu. The combination of such characteristics would allow surface characterization with while ensuring a long lifetime and geometrical, chemical and physical stability of the tip.

nanotubes, in particular short ones, are of great interest due to their inherent strong carbon–carbon bonds, which allows them to withstand buckling and bending deformation and recover to their original shape after deformation. Capped tubes in turn offer improved chemical stability and stiffness in comparison to non-capped tubes. These considerations indicate that short, capped single-walled carbon nanotubes may be ideal imaging probe tips.

As it is not yet possible to use such tips in experimental setups, to test this hypothesis Liu and Zhang performed large-scale atomistic simulations focusing on the interaction between such nanotube probing tips and (see image)—a carbon material that is ideal for surface coating lubrication. “Because of advances in the development of accurate atomic potentials and massive parallel computing algorithms, atomistic simulations not only enable us to determine the probing characteristics of such tips, but also to investigate the frictional and defect characteristics of graphene with atomic resolution,” says Liu.

The simulations could capture the dependence of the and average normal forces on tip-to-surface distance and number of graphene layers. The researchers analyzed and interpreted the observed characteristics in terms of different types of sliding motions of the tip across the surface, as well as energy dissipation mechanisms between the tip and underlying graphene layers. They could further identify clear signatures that distinguish the motion of a tip across a point defect or the so-called Stone-Thrower-Wales defect, which is thought to be responsible for nanoscale plasticity and brittle–ductile transitions in the graphene carbon lattice. “Our simulations provide insight into nanoscale friction and may provide guidelines on how to control it,” says Liu.

Explore further: Friction force differences offer new means for manipulating nanotubes

More information: Research Article in Carbon

Related Stories

Self-cooling observed in graphene electronics

April 3, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Hydrogen opens the road to graphene ... and graphane

May 9, 2011

( -- An international research team has discovered a new method to produce belts of graphene called nanoribbons. By using hydrogen, they have managed to unzip single-walled carbon nanotubes. The method also opens ...

Why carbon nanotubes spell trouble for cells

September 18, 2011

It's been long known that asbestos spells trouble for human cells. Scientists have seen cells stabbed with spiky, long asbestos fibers, and the image is gory: Part of the fiber is protruding from the cell, like a quivering ...

Graphene can be strengthened by folding

September 20, 2011

( -- With a strength 200 times greater than that of steel, graphene is the strongest known material to exist. But now scientists have found that folding graphene nanoribbons into structures they call “grafold” ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.