A serendipitous gravitational lens

November 21, 2011
An optical image of "The Elliot Arc," a remote galaxy seen here as a purplish arc because of the distorting effect of a gravitational lens - the intervening foreground cluster of galaxies (seen here as white circles). Credit: Buckley-Geer et al.

(PhysOrg.com) -- The path traveled by a light beam will bend in the presence of matter. This remarkable prediction, reached by Einstein in his theory of general relativity, was confirmed by observations of the solar eclipse of 1919. One consequence of this phenomenon is that light from a distant galaxy passing by an intervening galaxy en route to earth will be distorted, much in the way that light passing through a glass lens will be bent, sometimes deforming the appearance of objects seen through it.

Astronomers call an intervening galaxy in this role a "gravitational lens"; the object whose light is bend is called the lensed galaxy. The first such gravitationally lensed object was discovered in 1979, and since then several dozen lensed galaxies have been found. Such discoveries are difficult to make, however, because the lensed galaxies are far away, very faint, and randomly found across the sky, while there are many millions of other galaxies that, at least at first glance, appear similar.

CfA astronomer Mark Brodwin is one member of a team of scientists examining a set of images taken by a sensitive optical survey of the extragalactic sky designed to study the cosmological . They discovered in one image a beautiful example of a gravitational lens in the form of a purplish ring around a galaxy. The lead author named the source "The Elliot Arc" after her nephew. Followup research found that the lensing galaxy is at a nominal distance of 4.9 billion light-years; studies of the Elliot Arc revealed that it is the distorted image of a much older and distant galaxy, located about 10.1 billion light-years away.

The scientists were further able to conclude that the closer galaxy is actually a gigantic with a combined mass of about 20,000 Milky Way galaxies. They also found that the appears to have much weaker star formation going on than is expected from current models - but then discoveries like this one, that push the limits of knowledge, often refine our understanding of the distant universe.

Explore further: 'Big baby' galaxy found in newborn Universe

Related Stories

'Big baby' galaxy found in newborn Universe

September 28, 2005

The NASA/ESA Hubble Space Telescope and NASA’s Spitzer Space Telescope have teamed up to 'weigh' the stars in distant galaxies. One of these galaxies is not only one of the most distant ever seen, but it appears to be unusually ...

Trick of Nature Allows Hubble and Keck to Find Tiny Galaxy

October 5, 2007

A team of astronomers at the University of California at Santa Barbara report that they have resolved a dwarf galaxy 6 billion light-years away. Weighing only 1/100 as much as our Milky Way Galaxy, the dwarf is much smaller ...

Astronomers discover an unusual cosmic lens

July 16, 2010

Astronomers at the California Institute of Technology (Caltech) and Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have discovered the first known case of a distant galaxy being magnified by ...

Lensed galaxies

November 12, 2010

In 1915, Einstein amazed the world by predicting that the path of light could be bent by mass. As a consequence, light from a distant galaxy passing by an intervening galaxy en route to earth will be distorted. Just as a ...

A magnified supernova

September 27, 2011

Supernovae are among astronomers most important tools for exploring the history of the universe. Their frequency allows us to examine how active star formation was, how heavy elements have developed, and the distance to galaxies ...

Recommended for you

Jupiter's great red spot heats planet's upper atmosphere

July 27, 2016

Researchers from Boston University's (BU) Center for Space Physics report today in Nature that Jupiter's Great Red Spot may provide the mysterious source of energy required to heat the planet's upper atmosphere to the unusually ...

The role of magnetic fields in star formation

July 29, 2016

The star forming molecular clump W43-MM1 is very massive and dense, containing about 2100 solar masses of material in a region only one-third of a light year across (for comparison, the nearest star to the Sun is a bit over ...

Seven new embedded clusters detected in the Galactic halo

July 25, 2016

(Phys.org)—A team of Brazilian astronomers, led by Denilso Camargo of the Federal University of Rio Grande do Sul in Porto Alegre, has discovered seven new embedded clusters located unusually far away from the Milky Way's ...

Mars gullies likely not formed by liquid water

July 29, 2016

New findings using data from NASA's Mars Reconnaissance Orbiter show that gullies on modern Mars are likely not being formed by flowing liquid water. This new evidence will allow researchers to further narrow theories about ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
not rated yet Nov 21, 2011
deleted - wrong thread
El_Nose
not rated yet Nov 21, 2011
this is not news
BillFox
5 / 5 (1) Nov 21, 2011
Inb4 neutron repulsion.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.