Scientists watch a next-generation ferroelectric memory bit switch in real time

Nov 17, 2011

For the first time, engineering researchers have been able to watch in real time the nanoscale process of a ferroelectric memory bit switching between the 0 and 1 states.

Ferroelectric materials have the potential to replace current designs, offering greater than magnetic hard drives and faster write speed and longer lifetimes than . Replacing —the short-term memory that allows your computer to operate—with can significantly decrease energy usage in computers. Ferroelectric memory doesn't require power to retain data.

A paper on the research is published in the Nov. 18, 2011, edition of Science.

"This is a direct visualization of the operation of ferroelectric memory," said principal investigator Xiaoqing Pan, a professor in the Department of Materials Science and Engineering and director of the U-M Electron Microbeam Analysis Laboratory.

"By following ferroelectric switching at this scale in , we've been able to observe new and unexpected phenomena. This work will help us understand how these systems work so one can make better memory devices that are faster, smaller and more reliable."

The researchers were able to see that the switching process of ferroelectric memory begins at a different site in the material than they initially believed. And this switching can be sparked with a lot less power than they had hypothesized.

"In this system, electric fields are naturally formed at the ferroelectric/electrode interfaces and this lowers the barrier for switching—for free. That means you can write information with much lower power consumption," Pan said.

Pan is leading the development of special hybrid materials that contain both ferroelectric and magnetic components and could lead to next-generation magnetoelectric memory devices. This new study reports the behavior of one such material. An advantage of using these hybrid materials in memories is that they combine the advantages of both electric and magnetic memory classes: the ease of writing ferroelectric memory and the ease of reading magnetic memory. The interactions between ferroelectric and magnetic orders allow these to be integrated into other novel designs such as spintronics, which harness the intrinsic "up" or "down" spin of electrons.

Researchers from Cornell University, Penn State University, the University of Washington, the University of Wisconsin and Peking University also contributed to the work. The paper is called "Domain Dynamics during Ferroelectric Switching." The research is funded by the U.S. Department of Energy and the National Science Foundation.

Ferroelectrics, discovered about 90 years ago, are characterized by a spontaneous electric polarization that can be reoriented between different orientations by an applied electric field. This ability to form and manipulate the regions (domains) with different polarization orientations at the nanometer scale is key to the utility of for devices such as nonvolatile memories. The ferroelectric switching occurs through the nucleation and growth of favorably oriented domains and is strongly influenced by defects and interfaces with electrical contacts in devices. It is critical for to understand how the ferroelectric domain forms, grows and interacts with defects and interfaces.

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

Related Stories

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Fundamental discovery could lead to better memory chips

Mar 15, 2011

(PhysOrg.com) -- Engineering researchers at the University of Michigan have found a way to improve the performance of ferroelectric materials, which have the potential to make memory devices with more storage ...

Reverse Chemical Switching of a Ferroelectric Film

Feb 25, 2009

(PhysOrg.com) -- Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers ...

Recommended for you

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.