Engineers devise shoe sampling system for detecting trace amounts of explosives

November 21, 2011

The ability to efficiently and unobtrusively screen for trace amounts of explosives on airline passengers could improve travel safety – without invoking the ire of inconvenienced fliers. Toward that end, mechanical engineer and fluid dynamicist Matthew Staymates of the National Institute of Standards and Technology in Gaithersburg, Maryland, and colleagues have developed a prototype air sampling system that can quickly blow particles off the surfaces of shoes and suck them away for analysis.

The NIST engineers developed several different versions of the system. "One particular is a kiosk-style instrument that people step into, never having to physically remove their shoes for sampling," Staymates explains. "Air jets are located in strategic locations and used to dislodge particles from the shoe surface, and a large blower establishes a bulk flow field that ensures all liberated particles are transported in the appropriate direction."

In order to be used commercially, the sampling system – which can collect in just 6 to 7 seconds – would have to be combined with a particle collection device and a chemical analyzer, Staymates says: "Incorporating a particle collection device and chemical analyzer would certainly be possible in the current prototype, but it was outside of the scope of the project. NIST's role was to uncover the fundamental connection between fluid dynamics and trace aerodynamic sampling, and use our findings to help in the development of next-generation sampling approaches."

Creating a finished marketable device, he says, is "a job for private industry."

Explore further: Better track leads to new particles

More information: Staymates will describe the prototype device in a talk at the APS Division of Fluid Dynamics Meeting, which will take place Nov. 20-22, 2011, at the Baltimore Convention Center in the historic waterfront district of Baltimore, Maryland. Abstract:

Related Stories

Better track leads to new particles

December 7, 2006

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen developed ...

Researchers discover new way to control particle motion

March 17, 2008

Chemical engineers at The University of Texas at Austin have discovered a new way to control the motion of fluid particles through tiny channels, potentially aiding the development of micro- and nano-scale technologies such ...

Prototype Method Detects and Measures Elusive Hazards

September 8, 2009

( -- A chemist at the National Institute of Standards and Technology has demonstrated a relatively simple, inexpensive method for detecting and measuring elusive hazards such as concealed explosives and toxins, ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.