Engineers devise shoe sampling system for detecting trace amounts of explosives

Nov 21, 2011

The ability to efficiently and unobtrusively screen for trace amounts of explosives on airline passengers could improve travel safety – without invoking the ire of inconvenienced fliers. Toward that end, mechanical engineer and fluid dynamicist Matthew Staymates of the National Institute of Standards and Technology in Gaithersburg, Maryland, and colleagues have developed a prototype air sampling system that can quickly blow particles off the surfaces of shoes and suck them away for analysis.

The NIST engineers developed several different versions of the system. "One particular is a kiosk-style instrument that people step into, never having to physically remove their shoes for sampling," Staymates explains. "Air jets are located in strategic locations and used to dislodge particles from the shoe surface, and a large blower establishes a bulk flow field that ensures all liberated particles are transported in the appropriate direction."

In order to be used commercially, the sampling system – which can collect in just 6 to 7 seconds – would have to be combined with a particle collection device and a chemical analyzer, Staymates says: "Incorporating a particle collection device and chemical analyzer would certainly be possible in the current prototype, but it was outside of the scope of the project. NIST's role was to uncover the fundamental connection between fluid dynamics and trace aerodynamic sampling, and use our findings to help in the development of next-generation sampling approaches."

Creating a finished marketable device, he says, is "a job for private industry."

Explore further: IHEP in China has ambitions for Higgs factory

More information: Staymates will describe the prototype device in a talk at the APS Division of Fluid Dynamics Meeting, which will take place Nov. 20-22, 2011, at the Baltimore Convention Center in the historic waterfront district of Baltimore, Maryland. Abstract: absimage.aps.org/image/MWS_DFD11-2011-000062.pdf

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Prototype Method Detects and Measures Elusive Hazards

Sep 08, 2009

(PhysOrg.com) -- A chemist at the National Institute of Standards and Technology has demonstrated a relatively simple, inexpensive method for detecting and measuring elusive hazards such as concealed explosives ...

Better track leads to new particles

Dec 07, 2006

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen ...

Researchers discover new way to control particle motion

Mar 17, 2008

Chemical engineers at The University of Texas at Austin have discovered a new way to control the motion of fluid particles through tiny channels, potentially aiding the development of micro- and nano-scale technologies such ...

Recommended for you

The future of ultrashort laser pulses

8 minutes ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

17 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

18 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

19 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 0