Surprise role of nuclear structure protein in development

Nov 24, 2011

Scientists have long held theories about the importance of proteins called B-type lamins in the process of embryonic stem cells replicating and differentiating into different varieties of cells. New research from a team led by Carnegie's Yixian Zheng indicates that, counter to expectations, these B-type lamins are not necessary for stem cells to renew and develop, but are necessary for proper organ development. Their work is published November 24 by Science Express.

Nuclear lamina is the material that lines the inside of a cell's nucleus. Its major structural component is a family of proteins called lamins, of which B-type lamins are prominent members and thought to be absolutely essential for a cell's survival. in lamins have been linked to a number of human diseases. Lamins are thought to suppress the expression of certain by binding directly to the DNA within the cell's .

The role of B-type lamins in the differentiation of into various types of cells, depending on where in a body they are located, was thought to be crucial. The lamins were thought to use their DNA-binding suppression abilities to tell a cell which type of development pathway to follow.

But the team--including Carnegie's Youngjo Kim, Katie McDole, and Chen-Ming Fan--took a hard look at the functions of B-type lamins in embryonic stem cells and in live mice.

They found that, counter to expectations, lamin-Bs were not essential for embryonic stem cells to survive, nor did their DNA binding directly regulate the genes to which they were attached. However, mice deficient in B-type lamins were born with improperly developed organs—including defects in the lungs, diaphragms and brains—and were unable to breathe.

"Our works seems to indicate that while B-type lamins are not part of the early developmental tissue-building process, while they are important in facilitating the integration of different cell types into the complex architectures of various developing organs," Kim, the lead author, said. "We have set the stage to dissect the ways that a cell's nuclear lamina promote tissue organization process during development."

Explore further: DNA may have had humble beginnings as nutrient carrier

Provided by Carnegie Institution

not rated yet

Related Stories

A fly lamin gene is both like and unlike human genes

Jun 13, 2007

Mitch Dushay and colleagues at Uppsala University in Sweden announce the publication of their paper, "Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies" in the June 13th issue ...

Lamin B locks up Oct-1

Jan 12, 2009

A large fraction of the transcription factor Oct-1 is associated with the inner nuclear envelope, but how and why it is retained there was unknown.

How stem cells are regulated

Feb 22, 2007

Researchers from Biotech Research & Innovation Centre (BRIC) at University of Copenhagen have identified a new group of proteins that regulate the function of stem cells. The results are published in the new issue of Cell.

Scientists announce stem-cell discovery

Apr 20, 2006

U.S. scientists say they've uncovered signatures near crucial developmental genes -- a critical step toward creating embryonic stem cells for medicine.

Recommended for you

Research helps identify memory molecules

3 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

4 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

4 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0