A new role is hatched for female fruit flies

November 8, 2011

A team of New York University biologists has uncovered a previously unknown role for a set of cells within the female reproductive tract of fruit flies that affects the functioning of sperm and hence fertility. Their discovery, which is published November 8 in the online, open-access journal PloS Biology, adds to our understanding of how insects reproduce and may provide a means to manipulate reproductive behaviour in other insects.

The researchers studied spermathecal (SSCs)—a set of cells in the whose existence had previously been determined but whose function was unknown.

To explore the role of SSCs, the NYU researchers studied female Drosophila melanogaster, a fruit fly. have a rapid developmental time, allowing biologists to examine genetic and physical changes over a relatively short period. In addition, many of the genetic processes identified in flies are conserved in humans. Earlier pioneering fly research has led to many of the key discoveries of the molecular mechanisms underlying developmental processes in complex animals.

In order to isolate the role SSCs play, the researchers used a genetic technique to specifically eliminate SSCs in a sample of flies and monitored how their reproductive process was affected. The results indicated that SSCs have two fundamental roles in the reproductive process: they are necessary for moving fertlized eggs through the reproductive tract, and they assist in storing sperm.

Normal female fruit flies store sperm in two different organs—the seminal receptacle and two mushroom-shaped spermathecae. However, in flies lacking SSCs, sperm never reached the spermathecae, and those that reached the seminal receptacle subsequently lost their motility—that is, they stopped swimming. Without SSCs, the fly loses its ability to move fertilized eggs through the reproductive tract and as a result will hatch eggs internally—in utero—rather than outside the body. This may suggest that ovoviviparity—the ability to give birth to live young—can evolve more easily than previously thought.

"We are excited to see whether our findings apply to insects that are important to human health or agriculture," said Mark Siegal, the study's senior author and a professor of biology at NYU. "For instance, future work could explore boosting the reproduction of honeybees or, conversely, curbing this same process in disease-transmitting such as mosquitoes."

Explore further: For the fruit fly, everything changes after sex

More information: Schnakenberg SL, Matias WR, Siegal ML (2011) Sperm-Storage Defects and Live Birth in Drosophila Females Lacking Spermathecal Secretory Cells. PLoS Biol 9(11): e1001192. doi:10.1371/journal.pbio.1001192

Related Stories

For the fruit fly, everything changes after sex

December 10, 2007

The females of many insect species change their behavior right after mating: mosquitoes look for a meal of fresh blood and flies begin to lay eggs. Researchers at the IMP managed to identify the molecular switches that are ...

Proteins from male insects affect female behavior

February 23, 2011

(PhysOrg.com) -- For insects, as for humans, mating can involve complicated interactions between males and females, with each partner engaging in rituals or behaviors that influence the other.

New thinking on regulation of sex chromosomes in fruit flies

September 19, 2011

Fruit flies have been indispensible to our understanding of genetics and biological processes in all animals, including humans. Yet, despite being one of the most studied of animals, scientists are still finding the fruit ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.