On the road to plasmonics with silver polyhedral nanocrystals

November 22, 2011
On the left are micrographs of supercrystals of silver polyderal nanocrystals and on the right the corresponding diagrams of their densest known packings for (from top-down) cubes, truncated cubes and cuboctahedra. Credit: Image courtesy of Berkeley Lab

The question of how many polyhedral nanocrystals of silver can be packed into millimeter-sized supercrystals may not be burning on many lips but the answer holds importance for one of today's hottest new high-tech fields – plasmonics! Researchers with the DOE's Lawrence Berkeley National Laboratory (Berkeley Lab) may have opened the door to a simpler approach for the fabrication of plasmonic materials by inducing polyhedral-shaped silver nanocrystals to self-assemble into three-dimensional supercrystals of the highest possible density.

Plasmonics is the phenomenon by which a beam of light is confined in ultra-cramped spaces allowing it to be manipulated into doing things a beam of light in open space cannot. This phenomenon holds great promise for superfast computers, microscopes that can see nanoscale objects with visible light, and even the creation of invisibility carpets. A major challenge for developing plasmonic technology, however, is the difficulty of fabricating metamaterials with nano-sized interfaces between noble metals and dielectrics.

Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, led a study in which nanocrystals of a variety of polyhedral shapes self-assembled into exotic millimeter-sized superstructures through a simple sedimentation technique based on gravity. This first ever demonstration of forming such large-scale silver supercrystals through sedimentation is described in a paper in the journal Nature Materials titled "Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices." Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author.

"We have shown through experiment and computer simulation that a range of highly uniform, nanoscale silver polyhedral crystals can self-assemble into structures that have been calculated to be the densest packings of these shapes," Yang says. "In addition, in the case of octahedra, we showed that controlling polymer concentration allows us to tune between a well-known lattice packing structure and a novel packing structure that featured complex helical motifs."

Schematic representation of polyhedral shapes accessible using the silver polyol synthesis developed by Peidong Yang, et. al. Credit: Image courtesy of Berkeley Lab

In the Nature Materials paper Yang and his co-authors describe a polyol synthesis technique that was used to generate silver nanocrystals in various shapes, including cubes, truncated cubes, cuboctahedra, truncated octahedra and octahedra over a range of sizes from 100 to 300 nanometers. These uniform polyhedral nanocrystals were then placed in solution where they assembled themselves into dense supercrystals some 25 square millimeters in size through gravitational sedimentation. While the assembly process could be carried out in bulk solution, having the assembly take place in the reservoirs of microarray channels provided Yang and his collaborators with precise control of the superlattice dimensions.

"In a typical experiment, a dilute solution of nanoparticles was loaded into a reservoir that was then tilted, causing the particles to gradually sediment and assemble at the bottom of the reservoir," Yang says. "More concentrated solutions or higher angles of tilt caused the assemblies to form more quickly."

The assemblies generated by this sedimentation procedure exhibited both translational and rotational order over exceptional length scales. In the cases of cubes, truncated octahedra and octahedra, the structures of the dense supercrystals corresponded precisely to their densest lattice packings. Although sedimentation-driven assembly is not new, Yang says this is the first time the technique has been used to make large-scale assemblies of highly uniform polyhedral particles.

"The key factor in our experiments is particle shape, a feature we have found easier to control," Yang says. "When compared with crystal structures of spherical particles, our dense packings of polyhedra are characterized by higher packing fractions, larger interfaces between particles, and different geometries of voids and gaps, which will determine the electrical and optical properties of these materials."

The silver nanocrystals used by Yang and his colleagues are excellent plasmonic materials for surface-enhanced applications. Packing the nanocrystals into three-dimensional supercrystals allows them to be used as metamaterials with the unique optical properties that make plasmonic technology so intriguing.

"Our self-assembly process for these silver polyhedral may give us access to a wide range of interesting, scalable nanostructured materials with dimensions that are comparable to those of bulk materials," Yang says.

Explore further: Scientists use nanocrystals as dopants

Related Stories

Scientists use nanocrystals as dopants

January 23, 2007

U.S. scientists discovered that nanocrystals can mimic atoms in solid-state devices by altering their electrical properties, thereby acting as dopants.

New kid on the plasmonic block

April 18, 2011

With its promise of superfast computers and ultrapowerful optical microscopes among the many possibilities, plasmonics has become one of the hottest fields in high-technology. However, to date plasmonic properties have been ...

Conducting energy on a nano scale

July 15, 2011

Modern electronics as we know them, from televisions to computers, depend on conducting materials that can control electronic properties. As technology shrinks down to pocket sized communications devices and microchips that ...

Chemically assembled metamaterials may lead to superlenses

November 2, 2011

(PhysOrg.com) -- Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

thuber
not rated yet Nov 23, 2011
I am reminded that both Joel and Mike from Mystery Science Theater 3000 worked at "Gizmonics" institute, and whenever I see "plasmonics" its all I can think of.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.