Researchers' new recipe cooks up better tissue 'phantoms'

Nov 30, 2011

The precise blending of tiny particles and multicolor dyes transforms gelatin into a realistic surrogate for human tissue. These tissue mimics, known as "phantoms," provide an accurate proving ground for new photoacoustic and ultrasonic imaging technologies. "The ability to provide phantoms that are capable of mimicking desired properties of soft tissue is critical to advance the development of new, more-accurate imaging technologies," said Stanislav Emelianov of the University of Texas at Austin and co-author of a paper appearing in the Optical Society's (OSA) open-access journal Biomedical Optics Express that describes an improved method for fabricating tissue phantoms.

Ultrasonic imaging uses high-frequency acoustic pulses to probe the structure of tissues. Another technique, photoacoustic imaging, uses low-energy laser pulses to create tiny that propagate through tissues. Certain tissues and materials (e.g. blood, nanoparticles used in certain tests, and fluorescent dyes), however, readily absorb the typically used in photoacoustic imaging. By combining acoustic and photoacoustic imaging techniques, it's possible to create a more comprehensive picture of soft tissues. Designing effective imaging devices that can concurrently harness these two technologies, however, requires true-to-life phantoms. Emelianov and his colleagues have met this need by designing and testing a novel combination of additives that enable gelatin to acquire acoustical and optical properties that accurately match soft tissue in humans.

To match the acoustical properties, the researchers added 40-micron silica spheres to the gelatin. These particles help scatter the acoustical signal, matching the behavior of normal tissue. An emulsion of fat was also used to attenuate, or absorb, the acoustical signal. The fat additive also enhanced optical scattering of the mixture. The final ingredients were commercial dyes – India ink, Direct Red 81, and Evans blue – which provided similar optical absorption to natural tissues.

"These combined characteristics are of particular value because of the growing use of combined ultrasonic and photoacoustic imaging in clinical and preclinical research," says Emelianov. "Furthermore, there has been increased interest in utilizing these combined technologies in clinical applications, such as vascular imaging, lymph node assessment, and atherosclerotic plaque characterization."

Explore further: Precision gas sensor could fit on a chip

More information: "Tissue-Mimicking Phantoms for Photoacoustic and Ultrasonic Imaging," Biomedical Optics Express, Volume Vol. 2, Issue 11, pp. 3193-3206 (2011).

add to favorites email to friend print save as pdf

Related Stories

Gold Nanobeacons Detect Sentinel Lymph Nodes

Mar 25, 2010

(PhysOrg.com) -- Virtually every patient diagnosed with breast cancer or melanoma undergoes lymph node biopsy to determine if their cancer has begun spreading in the body. Taking this biopsy involves an invasive and uncomfortable ...

Seeing melanoma (w/ Video)

Aug 11, 2010

Melanoma is one of the less common types of skin cancer but it accounts for the majority of the skin cancer deaths (about 75 percent).

Recommended for you

New filter could advance terahertz data transmission

6 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

6 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

8 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

9 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

20 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.