Physicists scrutinize the universe with a novel camera

Nov 07, 2011
© 2011 EPFL

( -- For the first time, a telescope has been equipped with a camera based on a new technology that uses semiconductors. This instrument will observe the flashes of light that are produced by gamma rays when they penetrate the Earth’s atmosphere.

 There are particle accelerators in the universe that are far more powerful than CERN’s Large Hadron Collider. Supermassive black holes in the centers of far-off galaxies and the remainders of exploded stars, for example, send various particles, known as cosmic rays, hurtling out into the universe. When these rays interact with interstellar space, they produce another kind of radiation, known as . Telescopes observe these particles in order to reveal potential those cosmic accelerators. These telescopes can capture flashes of light, called Cherenkov flashes, that occur when gamma rays interact with the ’s atmosphere. The observation of these brief flashes requires ultra-rapid, sensitive cameras that can record several billions images per second. This is the feat that’s been accomplished by the First G-APD Cherenkov Telescope (FACT), designed by EPFL and the universities of Geneva, Dortmund, and Würzburg under the leadership of ETH Zurich.

Getting a glimpse into where cosmic rays are born

Nearly a century has passed since the discovery of , yet their origin remains one of the fundamental unsolved mysteries of modern physics. The FACT telescope is the first step towards solving this mystery, which will involve building a network of Cherenkov telescopes. This network will be crucial for identifying the source of cosmic radiation. Physicists hope to be able to associate the observed flashes with a known object such as a supermassive black hole at the heart of a galaxy or a stellar supernova.

New technology

This is the first time that this semiconductor-based camera technology is being used in astronomy. The FACT telescope detector is composed of light-sensitive diodes that produce an electric current when they record a flash of Cherenkov radiation. The are advantageous for several reasons. The camera is lightweight, and so a telescope equipped with it can also be lighter in weight. It maintains good sensitivity in high ambient light conditions. It is thus possible to make observations when the moon is full; the detector’s performance is not compromised by exposure to light, as is quickly the case with traditional cameras.

A 45-person team built the FACT telescope camera on the ETH Zurich campus. Once completed, the detector was sent to the El Roque de los Muchachos observatory in the Canary Islands. It was mounted on an already existing telescope that had been completely restored by a team from EPFL and the universities of Dortmund and Würzburg. Calibration tests and the observations of the first flashes were largely carried out by an EPFL team from the High Energy Physics Laboratory, led by Mathieu Ribordy, who is in charge of for data processing for the . Scientists from the laboratory were able to put to use what they had learned from their participation in the IceCube Neutrino Observatory, an installation in the Antarctic designed to detect high energy cosmic ray neutrinos.

Explore further: Commercial Dream Chaser closer to critical design review and first flight

More information:

Provided by Ecole Polytechnique Federale de Lausanne

4.9 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

MAGIC Telescope Finds Microquasar

Jun 06, 2006

The variable emission of high-energy gamma rays from a variable microquasar within our galaxy has been detected by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescope located in the Canary Islands. ...

HESS-II: a new camera for exploring the violent Universe

Jun 17, 2010

HESS, one of the world's best-performing ground-based gamma ray detectors, will soon boast a fifth telescope that will double its potential for making new discoveries. The telescope will be equipped with a ...

The MAGIC-II Telescope is ready to team up

Apr 15, 2009

( -- Together with the MAGIC-I telescope, MAGIC-2 allows stereoscopic observations using these two largest gamma-ray telescopes. Astronomers can explore sources of very-high energy gamma rays. ...

Galactic Center Found To Glow Unevenly

Feb 21, 2006

An international team of more than 100 astrophysicists said they have detected very-high-energy gamma rays emanating from the huge gas clouds known to pervade the center of the Milky Way galaxy.

Antarctic "Telescopes" Look for Cosmic Rays

Feb 08, 2005

Working in the harsh conditions of Antarctica, Maryland researchers are creating new ways of detecting cosmic rays, high energy particles that bombard the Earth from beyond our solar system.

Recommended for you

Video: A dizzying view of the Earth from space

45 minutes ago

We've got vertigo watching this video, but in a good way! This is a sped-up view of Earth from the International Space Station from the Cupola, a wraparound window that is usually used for cargo ship berthings ...

NEOWISE spots a comet that looked like an asteroid

46 minutes ago

Comet C/2013 UQ4 (Catalina) has been observed by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft just one day after passing through its closest approach to the sun. The comet ...

What the UK Space Agency can teach Australia

55 minutes ago

Australia has had an active civil space program since 1947 but has much to learn if it is to capture a bigger share of growing billion dollar global space industry. ...

Discover the "X-factor" of NASA's Webb telescope

1 hour ago

NASA's James Webb Space Telescope and Chandra X-ray observatory have something in common: a huge test chamber used to simulate the hazards of space and the distant glow of starlight. Viewers can learn about ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Nov 07, 2011
"This is the first time that this semiconductor-based camera technology is being used in astronomy." - Article

Semiconductor based sensors have been used in telescopes for the last 40 years, and have revolutionized astronomy in the process.

1 / 5 (1) Nov 07, 2011
"This is the first time that this semiconductor-based camera technology is being used in astronomy."

Agree with Vendi, HgCdTe IR semiconductor sensor arrays have been used on (among many others) the HST WFC3, VLT X-shooter, WISE and are planned to be used on the JWST: http://www.teledy...-20_.pdf
3.7 / 5 (3) Nov 07, 2011
The article refers to the first time that THIS (e.g., this specific) technology has been used:

First G-APD Cherenkov Telescope (FACT), designed by EPFL