Physicists develop a method of detecting counterfeit whiskey using spectroscopy

Nov 02, 2011 by Bob Yirka report
Image: Wikipedia

(PhysOrg.com) -- Physicists Praveen Ashok, Bavishna Praveen, and K. Dholakia working together at the University of St Andrews in Scotland have developed a method for testing whiskey for authenticity using a crafted device that allows for measurements via spectroscopy. The results of their research have been published in the journal Optics Express.

While it has long been known that could be used to analyze the components of whiskey, or any liquid that allows light to pass though it for that matter, previous models have required a lengthy setup process by a technically savvy person. This new process, in contrast, can be conducted by virtually anyone at any location once the device is sold commercially.

The device is actually nothing more than a microfluidic chip made of (PDMS), a type of clear plastic that has had horizontal channels carved into it to allow the insertion of fiber cables and vertical channels for the input and output of tiny whiskey samples. The reason it has been set up this way is to prevent of alcohol while the sample is being tested.

Once set up the apparatus looks like a flat piece of clear plastic about a quarter inch thick with four channels in it, all leading to its center. The channel or hole on top is where the whisky goes in. One channel leads to one side that is connected to a suction device for pulling the whisky through the channels. Two other channels leading to two other edges respectively are for holding fiber optic cables. One going in, the other out to the spectrometer.

To run the device, a drop of whiskey is dropped into the hole on top. It is then shot with a laser via the and then read by spectrometer on the other end of the output . The whiskey output channel is used for pulling the whisky back out so that the channels can be cleaned and the device reused.

The spectrometer performs two types of analysis. The first is to test for . For whisky to be considered authentic it must be at least 40% alcohol.

The second analysis measures other organic compounds found in the whiskey samples, such as esters and aldehydes, which are collectively called congeners. Also in the whiskey are tiny bits of wood from the casks that held the whiskey as it matured. The combination of all these substances, despite the fact that they amount to less than 1% of the volume of whiskey, are what make each unique, both visually, and in taste. By comparing the amounts of each in the sample, the is able to indentify whether it is authentic, as well as its brand, age and in some cases, which cask it came from.

Explore further: Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser

More information: Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip, Optics Express, Vol. 19, Issue 23, pp. 22982-22992 (2011) dx.doi.org/10.1364/OE.19.022982

Abstract
Standardization and quality monitoring of alcoholic beverages is an important issue in the liquor production industry. Various spectroscopic techniques have proved useful for tackling this problem. An ideal sensing device for alcoholic beverages should be able to detect the quality of alcohol with a small amount of sample at a low acquisition time using a portable and easy to use device. We propose the use of near infra-red spectroscopy on an optofluidic chip for quality monitoring of single malt Scotch whisky. This is chip upon which we have previously realized waveguide confined Raman spectroscopy. Analysis on this alignment-free, portable chip may be performed in only 2 seconds with a sample volume of only 20 µl. Using a partial least square (PLS) calibration, we demonstrate that the alcohol content in the beverage may be predicted to within a 1% prediction error. Principal component analysis (PCA) was employed for successful classification of whiskies based upon their age, type and cask. The prospect of implementing an optofluidic analogue of a conventional fiber based spectroscopic probe allows a rapid analysis of alcoholic beverages with dramatically reduced sample volumes.

Related Stories

Tiny spectrometer offers precision laser calibration

May 11, 2007

A tiny device for calibrating or stabilizing precision lasers has been designed and demonstrated at the National Institute of Standards and Technology. The prototype device could replace table-top-sized instruments ...

An optical traffic cop for rapid communication

May 03, 2010

It looks like a piece of gel that slips into the sole of your sneaker, but it's a new nano-based technology that can make computers and the Internet hundreds of times faster -- a communications technology "enabler" that may ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
1 / 5 (2) Nov 02, 2011
If you need to use a spectroscope to detect a counterfeit, then the counterfeit is as good as the original and should be valued as much.
Hengine
not rated yet Nov 02, 2011
Vendicar - lol no
Vendicar_Decarian
1 / 5 (2) Nov 03, 2011
Hengine - Lol yes.

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

The importance of plumes

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...