Seeing the phases of exoplanets

Nov 14, 2011 By Jon Voisey, Universe Today
Phases of Venus. Credit: ESO

Everyone is familiar with the fact that the moon changes phases. But what many don’t know is that planets also go through phases. Shown above are the phases for Venus. We look inwards on Venus from a more distant vantage point in our solar system, but in principle, planets in other solar systems would also go through phases as they orbited. While we are far too distant to resolve these phases any time soon, the percentage of reflected light may give clues about the size, composition, and atmosphere of a potential planet.

A new study by astronomers at the University of Bordeaux in France, analyzes differences in the way light would be reflected from various exoplanet configurations.

In a previous paper by the same team, they had analyzed how much light planets at different phases should reflect in different wavelengths of light in the infrared. Planets with atmospheres showed significant lack of emission at some wavelengths while rocky planets with no atmosphere reflected most strongly at one wavelength and faded smoothly off. The heavier the atmosphere, the more pronounced this effect was. As such, the team concluded that simply by looking at the reflected light in a few wavelengths, they could quickly determine whether the planet were likely to have an atmosphere.

The new paper adds to this by exploring what the effects of properties such as stellar type, orbital distance, radius of the planet, and inclination would have on these observations. They found that the presence of an atmosphere made determining many of these properties more difficult since it would be able to retain heat and reradiate it different manners instead of simply reflecting.

Rocky, airless planets were simpler and the light curves could be used more directly to determine the radius of the planet with an accuracy of about 10% with an instrument such as the James Webb Space Telescope. The orbital inclination could be narrowed down to within 10°. Currently, the only way astronomers can determine this property is if the planet is in the narrow ranges of inclination that allow it to transit the star, so while observing the phases to determine this property leaves large uncertainties, it is a start at the very least. These observations could also be used to determine the albedo, or reflectivity of the planet. This property could be used to help constrain the possible chemicals on the surface or in the atmosphere.

Explore further: Toothpaste fluorine formed in stars

add to favorites email to friend print save as pdf

Related Stories

Hunting for transits of Super-Earth GJ 581e

Jun 02, 2011

(PhysOrg.com) -- An international team of astronomers has ruled out transits of a water-rich or hydrogen-helium atmosphere planet for Gliese 581e. The host star itself is relatively quiet which means good ...

Greenhouse effect could extend habitable zone

Aug 26, 2011

The distant region beyond Saturn is too cold for liquid water, a necessity for life as we know it. But new research indicates that rocky planets far from their parent star could generate enough heat to keep ...

Two more kepler planets confirmed

Aug 08, 2011

Hot on the heels of confirming one Kepler planet, the Hobby-Eberly Telescope announces the confirmation of another planet. Another observatory, the Nordic Optical Telescope, confirms its first Kepler planet ...

Transiting super-Earth detected around naked eye star

May 02, 2011

One of the first known stars to host an extrasolar planet, was that of 55 Cancri. The first planet in this system was reported in 1997 and today the system is known to host at least five planets, the inner ...

Recommended for you

Toothpaste fluorine formed in stars

10 hours ago

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Swirling electrons in the whirlpool galaxy

Aug 20, 2014

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

User comments : 0