Fighting Parkinson's with carbon nanoparticles

Nov 29, 2011
Fighting Parkinson's with carbon nanoparticles

One of the problems affecting the human nervous system is dopamine deficiency. But testing of dopamine concentration is costly and requires sophisticated equipment not available in a doctor's office. Enter a team of Polish scientists who developed a method enabling the detection of dopamine in solutions both easily and cheaply, even in the presence of interferences. The results are published in the journal Biosensors and Bioelectronics.

Scientists at the Institute of of the Polish Academy of Sciences (IPC PAS) in Warsaw coated new with carbon nanoparticles deposited on silicate submicroparticles to get the targeted result. They applied the electrodes so as to determine dopamine concentration in solutions in the presence of uric and ascorbic acids, and paracetamol, substances that get in the way of dopamine analysis.

This latest development to detect dopamine could clear the path for securing fast and inexpensive that doctors can use even in their offices. This information will help physicians determine the likelihood of a patient suffering from popular including Parkinson's disease.

The researchers developed the electrodes by alternating layers of silicate submicroparticles and carbon nanoparticles. According to the team, the size of the silicate submicroparticles ranges from 100 nanometres to 300 nanometres (billionth parts of a metre). Being nonconductive, they are used only as a framework extending the electrode surface. Carbon nanoparticles, ranging between 8 nanometres and 18 nanometres in size, densely coat the that form the actual conductive working surface.

"Carbon nanoparticles have negatively charged , and the silicates positively charged ones," explains doctoral student Anna Celebanska of the IPC PAS. "The between them are quite strong. We checked that by multiple repeating of the immersion, a "sandwich" consisting of up to 24 layers can be obtained on the electrode surface."

The scientists applied the new electrodes for dopamine sensing in solutions. The carbon nanoparticle-coated electrodes are placed inside a prepared solution containing the same, and the electric potential is then applied. They say dopamine is electrochemically active and can be oxidized by adjusting the potential value.

"The results of the completed tests turned out very good," Ms. Celebanska says. "Our method is among the most sensitive methods for dopamine sensing. It allows to detect dopamine at concentrations as low as 10-7 mole per litre in the presence of interferences at concentrations up to 10-3 mole per liter."

Commenting on the results of the study, Professor Marcin Opallo says: "The method has a natural detection threshold, and that's why we can conclude on dopamine deficiency in the body. How large is the actual deficiency? At present we cannot answer the question. We hope, however, for further increase in the method's sensitivity."

Explore further: A heartbeat away? Hybrid 'patch' could replace transplants

More information: Biosensors and Bioelectronics: www.journals.elsevier.com/bios… -and-bioelectronics/

add to favorites email to friend print save as pdf

Related Stories

Brain parasite directly alters brain chemistry

Nov 04, 2011

A research group from the University of Leeds has shown that infection by the brain parasite Toxoplasma gondii, found in 10-20 per cent of the UK's population, directly affects the production of dopamine, a key chemical messen ...

Adult ADHD linked with dopamine levels

Aug 09, 2007

Adults with attention-deficit/hyperactivity disorder have a reduced response to the drug Ritalin, U.S. government scientists have found.

Dopamine-related drugs affect reward-seeking behavior

Apr 26, 2007

Drugs that adjust dopamine levels in the brain greatly affect how people react to success and failure, according to research that will be presented at the American Academy of Neurology’s 59th Annual Meeting in Boston.

Recommended for you

Ultrafast remote switching of light emission

16 hours ago

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Blades of grass inspire advance in organic solar cells

17 hours ago

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

User comments : 0