Pairing up: How chromosomes find each other

Nov 01, 2011
In Drosophila females, sequential meiotic stages are observable in a string of developing egg chambers called the ovariole. Meiosis starts at the anterior region (top-right) and meiotic cells form the synaptonemal complex (shown in purple) to pair up homolog chromosomes. Centromeres are shown in orange and DNA is labeled green Credit: Courtesy of Dr. Satomi Takeo, Stowers Institute for Medical Research.

After more than a century of study, mysteries still remain about the process of meiosis -- a special type of cell division that helps insure genetic diversity in sexually-reproducing organisms. Now, researchers at Stowers Institute for Medical Research shed light on an early and critical step in meiosis.

The research, to be published in the Nov. 8, 2011 issue of , clarifies the role of key called centromeres in the formation of a structure known as the synaptonemal complex (SC). "Understanding this and other mechanisms involved in meiosis is important because of the crucial role meiosis plays in normal —and the dire consequences of meiosis gone awry," says R. Scott Hawley, Ph.D., who led the research at Stowers.

"Failure of the meiotic division is probably the most common cause of spontaneous abortion and causes a number of birth defects such Down syndrome," Hawley says.

Meiosis reduces the number of chromosomes carried by an individual's regular cells by half, allocating precisely one copy of each chromosome to each egg or sperm cell and thus ensuring that the proper number of chromosomes is passed from parent to offspring. And because chromosomes come in pairs—23 sets in humans—the chromosomes must be properly matched up before they can be divvied up.

This video is not supported by your browser at this time.
The 3-D animation shows a meiotic nucleus from Drosophila. Centromeres (shown in red) cluster in one area while chromosome ends (shown in green) are spread out. Paired chromosomes are shown in blue Credit: With permission from Current Biology, Satomi et al.

"Chromosome 1 from your dad has to be paired with chromosome 1 from your mom, chromosome 2 from your dad with chromosome 2 from your mom, and so on," Hawley explains, "and that's a real trick. There's no room for error; the first step of pairing is the most critical part of the meiotic process. You get that part wrong, and everything else is going to fail."

The task is something like trying to find your mate in a big box store. It helps if you remember what they are wearing and what parts of the store they usually frequent (for example, movies or big-screen TVs). Similarly, chromosomes can pair up more easily if they're able to recognize their partners and find them at a specific place.

"Once they've identified each other at some place, they'll begin the process we call synapsis, which involves building this beautiful structure—the synaptonemal complex—and using it to form an intimate association that runs the entire length of each pair of chromosomes," Hawley explains.

Some model employed in the study of meiosis, such as yeast and the roundworm Caenorhabditis elegans, use the ends of their chromosomes to facilitate the process. "These organisms gather all the chromosome ends against the nuclear envelope into one big cluster called a bouquet or into a bunch of smaller clusters called aggregates, and this brings the chromosome ends into proximity with each other," Hawley says. "This changes the problem of finding your homologue in this great big nucleus into one of finding your mate on just the surface of the inside of the nucleus."

But the fruit fly Drosophila melanogaster—the model organism in which meiosis has been thoroughly studied for more than a century, and which Hawley has studied for almost 40 years – has unusual chromosome ends that don't lend themselves to the same kind of clustering.

"So even though the study of meiosis began in Drosophila, we really haven't had any idea how chromosomes initiate synapsis in Drosophila," Hawley says. "Now, we show that instead of clustering their , flies cluster their centromeres—highly organized structures that chromosomes use to move during cell division. From there, the biology works pretty much as you would expect: synapsis is initiated at the centromeres, and it appears to spread out along the arms of the chromosomes."

The ramifications of the findings extend beyond fruit flies, as there's some evidence that synapsis starts at centromeres in other organisms. In addition, Hawley and coauthors found that centromere clustering may play a role later in meiosis, when separate from their partners.

"There's reason to believe that some parts of that process will be at least explorable and potentially applicable to humans," Hawley said.

The work also is notable as an example of discovery-based science, Hawley said. "We didn't actually set out to study the initiation of meiosis; we were simply interested in characterizing the basic biology of early ."

But postdoctoral researcher and first author Satomi Takeo, Ph.D., noticed that centromere clustering and synaptonemal complex initiation occurred in concert, and her continued observations revealed the role of centromeres in initiating synapsis.

"I was staring with tired eyes at the cells that I was analyzing," Takeo recalls. "Somehow I started looking at the spots I had previously ignored—probably because I thought they were just background noise—until I saw the connection between centromere clustering and synapsis initiation. After going through many images, I wrote an email to Scott, saying, 'This is really important, isn't it??' With that finding, everything else started to make sense."

Explore further: Fighting bacteria—with viruses

Provided by Stowers Institute for Medical Research

5 /5 (1 vote)

Related Stories

Egg cells use unusual method of division

Aug 27, 2010

(PhysOrg.com) -- In a study of egg cells using time-lapse microscopy, researchers at the University of California, San Diego School of Medicine and the Ludwig Institute for Cancer Research have discovered an unusual property ...

Hotspots found for chromosome gene swapping

Nov 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0