'Noise' tunes logic circuit made from virus genes

Nov 08, 2011

In the world of engineering, "noise" – random fluctuations from environmental sources such as heat – is generally a bad thing. In electronic circuits, it is unavoidable, and as circuits get smaller and smaller, noise has a greater and more detrimental effect on a circuit's performance. Now some scientists are saying: if you can't beat it, use it.

Engineers from Arizona State University in Tempe and the Space and Naval Warfare Systems Center (SPAWAR) in San Diego, Calif., are exploiting to control the basic element of a computer – a logic gate that can be switched back and forth between two different logic functions, such as ANDOR – using a genetically engineered system derived from virus DNA. In a paper accepted to the AIP's journal Chaos, the team has demonstrated, theoretically, that by exploiting sources of external noise, they can make the network switch between different logic functions in a stable and reliable way.

The scientists focused on a single-gene network in a bacteriophage λ (lamda). The gene they use regulates the production of a particular protein in the virus. Normally, there are biological reactions that regulate the creation and destruction of this protein; upsetting that balance results in a protein concentration that is either too high or too low. The scientists assigned a "1" to one concentration and a "0" to the other. By manipulating the protein concentration, the team could encode the logic gate input values and obtain the desired output values.

Researchers modeled the system as two potential energy "wells" separated by a hump, corresponding to an energy barrier. In the presence of too much noise, the system never relaxes into one of the two wells, making the output unpredictable. Too little noise, on the other hand, does not provide the boost necessary for the system to reach a high enough protein concentration to overcome the energy barrier; in this case, there is also a high probability that the biological logic gate will fail to achieve its predicted computation. But an optimal amount of noise stabilizes the circuit, causing the system to jump into the "correct well" – and stay there. This proof-of-concept work offers the possibility of exploiting noise in biologic circuits instead of regarding it as a laboratory curiosity or a nuisance, the researchers say.

Explore further: New insights found in black hole collisions

More information: "Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block" is accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science.

Provided by American Institute of Physics

4.3 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Lightweight true random number generators a step closer

Sep 20, 2010

The widespread use of true random number generators (TRNGs) has taken a step closer following the creation of the most lightweight designs to date by researchers at Queen's University Belfast's Institute of Electronics, Communications ...

Researchers identify the source of 'noise' in HIV

Apr 20, 2010

New research identifies a molecular mechanism that the human immunodeficiency virus (HIV) appears to utilize for generating random fluctuations called "noise" in its gene expression. The study, published by Cell Press in ...

Noise research to combat 'wind turbine syndrome'

Jun 01, 2011

(PhysOrg.com) -- University of Adelaide acoustics researchers are investigating the causes of wind turbine noise with the aim of making them quieter and solving 'wind turbine syndrome'.

Tuning in to noisy interference

Jul 29, 2011

Establishing a detailed knowledge of the noise properties of superconducting systems is an important step towards the development of quantum computers, which will enable new types of computing. However, the ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.