A better way to count molecules discovered

Nov 21, 2011

(PhysOrg.com) -- Researchers at the Swedish medical university Karolinska Institutet have developed a new method for counting molecules. Quantifying the amounts of different kinds of RNA and DNA molecules is a fundamental task in molecular biology as these molecules store and transfer the genetic information in cells. Thus, improved measurement techniques are crucial for understanding both normal and cancer cells.

It is very difficult to detect small individual molecules in a complex mixture. Therefore, the signal is usually first amplified by making many copies of each molecule. Unfortunately, the copying complicates tracking the exact number of original molecules. The reason is that it is virtually impossible to tell afterwards exactly how many times each original molecule was copied as all copies originating from same type of molecules are indistinguishable from each other.

In an article published by the scientific journal the researchers present a method in which the molecules are first artificially made different in such a way that the copies made from different original molecules can be later distinguished. Then the molecules can be efficiently counted using the new high-throughput sequencers that can read millions of short DNA stretches in parallel. The idea behind the method is astonishingly simple, yet it enables counting the absolute number of molecules in a cell sample whereas many current methods can only measure relative differences between samples.

Professor Jussi Taipale's group applied the new method to simultaneously count thousands of different types of molecules present in cells. The new method proved to be more accurate than the one that has been commonly used for this task. Efficient and reliable counting of messenger is important because their abundances reveal which genes are active in the cells of interest. Professor Taipale's group studies regulation of cell growth and thus wants to understand not only which genes are active in normal cells but also genes that are aberrantly activated in .

The new molecule counting method was developed as collaboration between Jussi Taipale's and Sten Linnarsson's groups at Karolinska Institutet, The method has turned out to be especially suitable for counting molecules from a small number of cells. Thus, Sten Linnarsson plans to apply it to counting molecules from a single cell - a very exciting and challenging task. The principle of the new method can also be used to improve other important measurement techniques, and to develop technologies that allow more accurate sequencing of genomes of cancer cells and various organisms.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Kivioja T*, Vähärautio A*, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J, Counting absolute numbers of molecules using unique molecular identifiers, Nature Methods, advance online publication 20 november 2011.

Related Stories

New DNA analysis thousand times more sensitive

Jun 17, 2011

(PhysOrg.com) -- An international team of researchers has developed a new DNA technology which makes it possible to perform reliable analyses on DNA quantities that are a thousand times smaller than was previously the case. ...

Human cells can copy not only DNA, but also RNA

Aug 10, 2010

Single-molecule sequencing technology has detected and quantified novel small RNAs in human cells that represent entirely new classes of the gene-translating molecules, confirming a long-held but unproven hypothesis that ...

New method for imaging molecules inside cells

Jun 28, 2011

Using a new sample holder, researchers at the University of Gothenburg, Sweden, have further developed a new method for imaging individual cells. This makes it possible to produce snapshots that not only show ...

Researchers make cell biology quantitative

Oct 20, 2005

Yale researchers have reported a method to count the absolute number of individual protein molecules inside a living cell, and to measure accurately where they are located, two basic hurdles for studying biology ...

A question of gene silencing

Aug 24, 2011

When investigating cancer cells, researchers discovered numerous peculiarities: Particular RNA molecules are present in large numbers, particular genes are overactive. Do these characteristics have a relation to cancer? Do ...

Mutations directly identifiable in active genes

Apr 12, 2010

Researchers at Uppsala University, Sweden, have developed a new method for identifying genetic variation, including mutations, in active genes. Hopes are strong that the method represents an important research tool that will ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.