For new microscope images, less is more

November 8, 2011

When people email photos, they sometimes compress the images, removing redundant information and thus reducing the file size. Compression is generally thought of as something to do to data after it has been collected, but mathematicians have recently figured out a way to use similar principles to drastically reduce the amount of data that needs to be gathered in the first place. Now scientists from the University of Houston and Rice University in Houston, Texas have utilized this new theory, called compression sensing, to build a microscope that can make images of molecular vibrations with higher resolution and in less time than conventional methods. The microscope provides chemists with a powerful new experimental tool.

The main concept behind compressive sensing is something called "sparsity." If a signal is "sparse," the most important is concentrated in select parts of the signal, with the rest containing redundant information that can be mathematically represented by zero or near-zeros numbers. The sparse signal that the Texas researchers were looking at came from a sum frequency generation (SFG) microscope, which shines two different frequency lasers at a surface and then measures the return signal to gather information about the and orientation of the molecules at the surface boundary.

Traditional SFG microscopes scan a sample by systematically moving across it, but the resolution of these traditional scans is limited because as resolution increases the strength of the signal decreases. Instead of systematically scanning the boundary, the compressive sensing microscope gathered a set of pseudo-randomly positioned sampling points. If the important information was captured in the sample, then a series of mathematical steps could be used to construct the entire image. The researchers tested their microscope by imaging stripes of gold deposited on a silicon background and then coated with a chemical called octadecanethiol. The device sensed the stretching of the carbon-hydrogen bonds in the octadecanethiol layer and created images with 16 times more pixel density than was possible with the traditional scanning techniques. The new could find applications in biomolecular imaging and the scientific study of interfaces.

Explore further: New Microscope Gives Scientists 3D Views of Living Organisms

More information: "Sum Frequency Generation-Compressive Sensing Microscope" is accepted for publication in the Journal of Chemical Physics.

Related Stories

New Microscope Gives Scientists 3D Views of Living Organisms

August 12, 2004

Physicists at the European Molecular Biology Laboratory (EMBL) have developed a state-of-the-art microscope that gives scientists a much deeper look into living organisms than ever before. The new technology will undoubtedly ...

New 'superlens' reveals hidden nanostructures

September 14, 2006

A microscope used to scan nanostructures can be dramatically enhanced by using a 'superlens,' reports an international team of scientists from the Max Planck Institute (MPI) for Biochemistry and The University of Texas at ...

NIST imaging system maps nanomechanical properties

December 12, 2007

The National Institute of Standards and Technology has developed an imaging system that quickly maps the mechanical properties of materials—how stiff or stretchy they are, for example—at scales on the order of billionths ...

Helium raises resolution of whole cell imaging

October 3, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have ...

Recommended for you

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.