Lava fingerprinting reveals differences between Hawaii's twin volcanoes

Nov 30, 2011
A robotic arm on the JASON2 sub collects a lava sample from Mauna Loa, 10,000 feet below sea level.

Hawaii's main volcano chains -- the Loa and Kea trends -- have distinct sources of magma and unique plumbing systems connecting them to the Earth's deep mantle, according to UBC research published this week in Nature Geoscience, in conjunction with researchers at the universities of Hawaii and Massachusetts.

This study is the first to conclusively relate geochemical differences in surface lava rocks from both chains to differences in their deep mantle sources, 2,800 kilometres below the Earth's surface, at the core-mantle boundary.

"We now know that by studying oceanic island lavas we can approach the composition of the Earth's mantle, which represents 80 per cent of the Earth's volume and is obviously not directly accessible," says Dominique Weis, Canada Research Chair in the Geochemistry of the Earth's Mantle and Director of UBC's Pacific Centre for Isotopic and Geochemical Research.

"It also implies that mantle plumes indeed bring material from the deep mantle to the surface and are a crucial means of heat and material transport to the surface."

The results of this study also suggest that a recent dramatic increase in Hawaiian volcanism, as expressed by the existence of the Hawaiian islands and the giant Mauna Loa and Mauna Kea volcanoes (which are higher than Mount Everest when measured from their underwater base) is related to a shift in the composition and structure of the source region of the Hawaiian . Thus, this work shows, for the first time, that the chemistry of hotspot lavas is a novel and elegant probe of deep earth evolution.

Weis and UBC colleagues Mark Jellinek and James Scoates made the connection by fingerprinting samples of Hawaiian island lavas -- generated over the course of five million years -- by isotopic analyses. The research included collecting 120 new samples from Mauna Loa -- "the largest on Earth" emphasizes co-author and University of Massachusetts professor Michael Rhodes.

"Hawaiian volcanoes are the best studied in the world and yet we are continuing to make fundamental discoveries about how they work," according to co-author and University of Hawaii volcanologist Michael Garcia.

The next steps for the researchers will be to study the entire length of the Hawaiian chain (which provides lava samples ranging in age from five to 42 million years old) as well as other key oceanic islands to assess if the two trends can be traced further back in time and to strengthen the relationship between lavas and the composition of the deep mantle.

Explore further: Satellites catch the birth of two volcanic islands

Related Stories

Deep recycling in the Earth faster than thought

Aug 10, 2011

The recycling of the Earth's crust in volcanoes happens much faster than scientists have previously assumed. Rock of the oceanic crust, which sinks deep into the earth due to the movement of tectonic plates, ...

New explanation for Hawaiian hot spot

May 27, 2011

(PhysOrg.com) -- Scientists in the US have suggested that volcanic activity in Hawaii could be fed by a giant hot rock pool 1,000 kilometers west of the islands and in the Earth’s mantle, rather than ...

Reservoirs of ancient lava shaped Earth

Jul 27, 2011

Geological history has periodically featured giant lava eruptions that coat large swaths of land or ocean floor with basaltic lava, which hardens into rock formations called flood basalt. New research from Matthew Jackson ...

Recommended for you

The Albian Gap, salt rock, and a heated debate

7 hours ago

Salt rock behaves as a fluid and can play a pivotal role in the large-scale, long-term collapse of the world's continental margins. However, the precise way in which this occurs is laced in controversy; nowhere ...

Satellites catch the birth of two volcanic islands

17 hours ago

The birth of a volcanic island is a potent and beautiful reminder of our dynamic planet's ability to make new land. Given the destruction we've seen following natural events like earthquakes and tsunamis in t ...

Uncovering diversity in an invisible ocean world

18 hours ago

Plankton are vital to life on Earth—they absorb carbon dioxide, generate nearly half of the oxygen we breathe, break down waste, and are a cornerstone of the marine food chain. Now, new research indicates ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.