Inhaled nanoparticles deliver potent anticancer cocktail to lung tumors and block resistance

Nov 21, 2011

(PhysOrg.com) -- An ideal treatment for lung cancer would be one that could be inhaled deep into lung tissue where it would deliver tumor-killing agents that would then largely stay in the lungs, avoiding the toxicities that limit the effectiveness of today's lung cancer therapies. Now, researchers at Rutgers, The State University of New Jersey, have developed an inhalable porous silica nanoparticle that not only delivers potent anticancer drugs only to non-small cell lung tumors, but also delivers agents that prevent the development of drug resistance.

Reporting its work in the Journal of Drug Targeting, a research team headed by Tamara Minko showed that a targeted silica nanoparticle was effective at getting a cocktail of drugs into lung tumors in animals and triggering cancer cell death. The inhaled nanoparticles largely remaining in the lungs, with a small amount accumulating in the liver and kidneys, the organs that are typically involved in excreting nanoparticles and other administered compounds.

Minko and her colleagues began this project by first developing mesoporous silica nanoparticles that could effectively deliver a mixture of traditional and siRNA molecules specifically to . The investigators chose mesoporous silica nanoparticles for two reasons - their makes them ideal for delivering large loads of different types of molecules and they are biocompatible.

The researchers chose the anticancer agents doxorubicin and cisplatin, used today to treat lung cancer, as the primary tumor killing agents. They then designed two siRNA molecules to stop the development of drug resistance that develops during conventional anticancer treatment. One siRNA molecule would block tumor cell production of a drug pump that they use to expel anticancer agents, while the other siRNA would limit production of a protein that tumor cells use to prevent the , or apoptosis, that doxorubicin and cisplatin normally triggers.

To target the nanoparticles to , the researchers added a molecule known as LHRH to the surface of the nanoparticle. LHRH binds to a receptor that is produced at high levels by many types of cancers, including lung cancers.

Tests with non-small cell lung tumor cells demonstrated that this complex formulation was highly effective at killing the cells and preventing the expression of the two types of responses normally seen. Tests in animals showed that nearly three quarters of the inhaled nanoparticles remained in the lungs and were taken up by tumor cells. In this study, the researchers did not measure efficacy in killing tumors in the animals.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA." An abstract of this paper is available at the journal's website.

Explore further: Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals

More information: View abstract

Related Stories

Two-In-One Punch Knocks Out Drug Resistant Cancer Cells

Nov 04, 2009

(PhysOrg.com) -- Cancer cells, like bacteria, can develop resistance to drug therapy, leading to relapse of disease. One approach showing promise in overcoming multidrug resistance in tumors is to combine two different anticancer ...

Nanoparticles Overcome Anticancer Drug Resistance

Jun 12, 2006

Too often, chemotherapy fails to cure cancer because some tumor cells develop resistance to multiple anticancer drugs. In most cases, resistance develops when cancer cells begin expressing a protein, known as p-glycoprotein, ...

Therapeutic nanoparticles targeted to radiation treated tumors

Mar 28, 2011

Radiation and chemotherapy are common partners in anticancer therapy for solid tumors, but too often, the combined side effects associated with each mode of therapy can limit how aggressively oncologists can treat their patients. ...

Double-Duty Nanoparticles Overcome Drug Resistance in Tumors

Jun 14, 2007

Cancer cells, like bacteria, can develop resistance to drug therapy. In fact, research suggests strongly that multidrug resistant cancer cells that remain alive after chemotherapy are responsible for the reappearance of tumors ...

Polymer Nanoparticle Kills Tumors

Jan 12, 2006

Photodynamic therapy (PDT), which uses a light-sensitive chemical known as a photosensitizer to produce cell-killing “reactive oxygen,” has become an important option for the treatment of esophageal cancer and non-small ...

Recommended for you

Energy storage of the future

13 hours ago

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world.

User comments : 0