Imperfections may improve graphene sensors

Nov 29, 2011

Although they found that graphene makes very good chemical sensors, researchers at the University of Illinois at Urbana-Champaign have discovered an unexpected "twist"—that the sensors are better when the graphene is "worse"—more imperfections improved performance.

"This is quite the opposite of what you would want for transistors, for example," explained Eric Pop, an assistant professor of electrical and computer engineering and a member of the interdisciplinary research team. "Finding that the less perfect they were, the better they worked, was counter intuitive at first."

The research group, which includes researchers from both chemical engineering and electrical engineering, and from a startup company, Dioxide Materials, reported their results in the November 23, 2011 issue of Advanced Materials.

"The objective of this work was to understand what limits the sensitivity of simple, two-terminal chemiresistors, and to study this in the context of inexpensive devices easily manufactured by chemical vapor deposition (CVD)," stated lead authors Amin Salehi-Khojin and David Estrada.

The researchers found that the response of graphene chemiresistors depends on the types and geometry of their defects.

"Nearly-pristine graphene chemiresistors are less sensitive to analyte molecules because adsorbates bind to point defects, which have low resistance pathways around them," noted Salehi-Khojin, a research scientist at Dioxide Materials and post-doctoral research associate in the Department of Chemical and Biomolecular Engineering (ChemE) at Illinois. "As a result, adsorption at point defects only has a small effect on the overall resistance of the device. On the other hand, micrometer-sized line defects or continuous lines of point defects are different because no easy conduction paths exist around such defects, so the resistance change after adsorption is significant."

"This can lead to better and cheaper gas for a variety of applications such as energy, homeland security and medical diagnostics" said Estrada who is a doctoral candidate in the Department of Electrical and Computer Engineering.

According to the authors, the two-dimensional nature of defective, CVD-grown graphene chemiresistors causes them to behave differently than carbon nanotube chemiresistors. This sensitivity is further improved by cutting the graphene into ribbons of width comparable to the line defect dimensions, or micrometers in this study.

"What we determined is that the gases we were sensing tend to bind to the defects," Pop said. "Surface defects in graphene are either point-, wrinkle-, or line-like. We found that the points do not matter very much and the lines are most likely where the sensing happens."

"The graphene ribbons with line defects appear to offer superior performance as graphene sensors," said ChemE professor emeritus and CEO Richard Masel. "Going forward, we think we may be able engineer the line defects to maximize the material's sensitivity. This novel approach should allow us to produce inexpensive and sensitive with the performance better than that of carbon nanotube sensors."

Explore further: Researchers use oxides to flip graphene conductivity

Provided by University of Illinois College of Engineering

5 /5 (1 vote)

Related Stories

Defect in graphene may present bouquet of possibilities

May 25, 2011

(PhysOrg.com) -- A class of decorative, flower-like defects in the nanomaterial graphene could have potentially important effects on the material's already unique electrical and mechanical properties, according ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Scientists make magnetic new graphene discovery

Apr 14, 2011

(PhysOrg.com) -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access ...

STM of individual grains in CVD-grown graphene

Jun 24, 2011

Users from Purdue University, working collaboratively with staff in the CNM Electronic & Magnetic Materials & Devices Group, studied CVD-grown graphene on polycrystalline copper foil for the first time at ...

Recommended for you

Researchers use oxides to flip graphene conductivity

17 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

23 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.