Exploring the atmosphere of exoplanet WASP-14b

Nov 15, 2011 By Jon Voisey, Universe Today
Conceptual orbit of WASP 14b system. Credit: SuperWASP team

First discovered in 2008, WASP 14b is an interesting exoplanet. It is roughly seven times as massive as Jupiter, but only 30% larger, making it among the densest known exoplanets. Recently, it was the target of observations from the Spitzer space telescope which was able to pick out the infrared radiation emitted by the planet and is giving astronomers new clues to how the atmospheres of Hot Jupiters function, contradicting expectations based on observations of other exoplanet atmospheres.

Images of the system were taken by a team of astronomers led by Jasmina Blecic and Joseph Harrington at the University of Central Florida. The team took images using three filters which allowed them to analyze the light at specific wavelengths. The brightness in each one was then compared to predictions made by models of atmospheres which included molecules such as H2O, CO, CH4, TiO, and VO as well as more typical atmospheric like hydrogen, oxygen, and nitrogen.

While not having a large number of filters wouldn’t allow the team to conclusively match a specific model, they were able to confidently rule out some possible characteristics. In particular, the team rules out the presence of a layer of atmosphere that changes sharply in temperature from the regions directly around it, known as a “thermal inversion layer”. This comes as quite a surprise since observations of other hot Jupiters have consistently shown evidence of just such a layer. It was believed that all hot Jupiter type exoplanets should feature them if their contained TiO or VO, molecules which filter out visible light. If they were present at a specific altitude, then that sudden layer of absorption would create a sudden shift in the temperature. The lack of this layer supports a 2009 study which suggested that such heavy molecules should settle out of the atmosphere and not be responsible for the thermal inversion layers. But this leaves astronomers with a fresh puzzle: If those molecules don’t cause them, then what does?

The team also found that the planet was brighter than expected when it was near the full phase which suggested that it is not as capable of redistributing its heat as some other exoplanets have been found to be. The team also confirmed that the planet has a notably elliptical orbit, despite being close to the star which should circularize the orbit. The astronomers that originally made the discovery of this planet postulated that this may be due to the presence of another planet which had a recent interaction that placed WASP 14b into its present orbit.

Explore further: Computers beat brainpower when it comes to counting stars

add to favorites email to friend print save as pdf

Related Stories

An Exoplanet with a Potassium-Rich Atmosphere

Mar 04, 2011

(PhysOrg.com) -- A hot Jupiter - a type of celestial object unknown only fifteen years ago - is a Jupiter-sized exoplanet orbiting so close to its host star that its atmospheric temperature is thought to be ...

Hubble to target 'hot jupiters'

Aug 22, 2011

(PhysOrg.com) -- An international team of astronomers led by a former UA graduate student has set out on the largest program to date exploring the alien atmospheres of "Hot Jupiters" - massive planets in solar ...

First carbon-rich exoplanet discovered

Dec 08, 2010

(PhysOrg.com) -- A team led by a former postdoctoral researcher in MIT's Department of Earth, Atmospheric and Planetary Sciences and the MIT Kavli Institute for Astrophysics, recently measured the first-ever ...

The shocking environment of hot Jupiters

Apr 19, 2011

(PhysOrg.com) -- Jupiter-like worlds around other stars push shock waves ahead of them, according to a team of UK astronomers. Just as the Earth's magnetic "bow-shock" protects us from the high-energy solar ...

Seeing the phases of exoplanets

Nov 14, 2011

Everyone is familiar with the fact that the moon changes phases. But what many don’t know is that planets also go through phases. Shown above are the phases for Venus. We look inwards on Venus from a ...

Recommended for you

A sharp eye on Southern binary stars

1 hour ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

1 hour ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

4 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 0

More news stories

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Rosetta instrument commissioning continues

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...