First elucidation of cause of long-term stability deterioration in solid oxide fuel cells

Nov 24, 2011
Figure:Dumbbell type oxygen vacancy clusters in a C-type rare earth structure

NIMS and the University of Queensland Centre for Microscopy and Microanalysis, the Dalian Polytechnic University, and the Dalian Institute of Chemical Physics, Chinese Academy of Science, clarified for the first time the cluster structure which has an extremely large effect on the long-term stability of solid oxide fuel cells (SOFC) for independent distributed power generation.

Dr. Toshiyuki Mori, Group Leader of the Hetero-interface Design Group, Battery and Field, Global Research Center for Environment and Energy Based on Materials Science (GREEN), National Institute for Materials Science (Japan), and Dr. Zhipeng Li, a Postdoctoral Researcher at GREEN, in joint research with Prof. John Drennan of the University of Queensland Centre for Microscopy and Microanalysis (Australia), the Dalian Polytechnic University (China), and the Dalian Institute of , Chinese Academy of Science (China), clarified for the first time the cluster structure which has an extremely large effect on the long-term stability of (SOFC) for independent distributed power generation. This result was achieved by transmission electron microscope (TEM) observation and computer simulation based on the results thereof.

Active development of fuel cells for home use and large-scale generating systems using SOFC has been underway up to the present. However, while it was possible to manufacture devices which sufficiently satisfied performance requirements, elements of instability remained from the viewpoints of reliability and life, and these were major obstacles to practical application.

In this experiment, the nanoscale defect structures of high performance specimens and specimens which exhibited serious deterioration in performance were observed using a high resolution (TEM), and their distinctive features were then analyzed in . This research ascertained for the first time that a “new oxygen defect cluster structure” which has a structure different from the “oxygen defect (oxygen vacancy) cluster structure” long considered to be the cause of reduced performance, forms in the material, triggering a phase transition, and this has a negative impact on the reliability and durability of fuel cells.

Various puzzling phenomena in SOFC, had been un-explained until now. These are (1) reason why a crystal phase transition occurs together with performance deterioration, (2) reason why adequate reliability cannot be maintained, etc., and they can be interpreted rationally using a model of this oxygen defect cluster structure. As a result effective solutions to these problems can be proposed based on , and the development of high performance, high reliability, long life SOFC materials for use in independent distributed generation is expected to become possible.

These research results were published online on November 7 in “Rapid communications” in the journal of the American Institute of Physics, Physical Review B.

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

TEAM Project Achieves Microscopy Breakthrough

Sep 06, 2007

The highest-resolution images ever seen in (S)TEM electron microscopy have been recorded using a new instrument developed jointly by U.S. Department of Energy national laboratories, FEI Company and CEOS GmbH, in Heidelberg, ...

Recommended for you

New filter could advance terahertz data transmission

23 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

23 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.