Are electron tweezers possible? Apparently so

Nov 09, 2011

(PhysOrg.com) -- Not to pick up electrons, but tweezers made of electrons. A recent paper by researchers from the National Institute of Standards and Technology (NIST) and the University of Virginia (UVA) demonstrates that the beams produced by modern electron microscopes can be used not just to look at nanoscale objects, but to move them around, position them and perhaps even assemble them.

Essentially, they say, the tool is an electron version of the laser “optical tweezers” that have become a standard tool in biology, physics and chemistry for manipulating tiny particles. Except that electron beams could offer a thousand-fold improvement in sensitivity and resolution.

Optical tweezers were first described in 1986 by a research team at Bell Labs. The general idea is that under the right conditions, a tightly focused laser beam will exert a small but useful force on tiny particles. Not pushing them away, which you might expect, but rather drawing them towards the center of the beam. Biochemists, for example, routinely use the effect to manipulate individual cells or liposomes under a microscope.

This video is not supported by your browser at this time.
Video clip showing electron tweezers at work. Credit: Oleshko,NIST

If you just consider the physics, says NIST metallurgist Vladimir Oleshko, you might expect that a beam of focused —such as that created by a transmission electron microscope (TEM)—could do the same thing. However that’s never been seen, in part because electrons are much fussier to work with. They can’t penetrate far through air, for example, so use vacuum chambers to hold specimens.

So Oleshko and his colleague, UVA materials scientist James Howe, were surprised when, in the course of another experiment, they found themselves watching an electron tweezer at work. They were using an electron microscope to study, in detail, what happens when a metal alloy melts or freezes. They were observing a small particle—a few hundred microns wide—of an aluminum-silicon alloy held just at a transition point where it was partially molten, a liquid shell surrounding a core of still solid metal. In such a small sample, the electron beam can excite plasmons, a kind of quantized wave in the alloy’s electrons, that reveals a lot about what happens at the liquid-solid boundary of a crystallizing metal. “Scientifically, it’s interesting to see how the electrons behave,” says Howe, “but from a technological point of view, you can make better metals if you understand, in detail, how they go from liquid to solid.”

“This effect of electron tweezers was unexpected because the general purpose of this experiment was to study melting and crystallization,” Oleshko explains. “We can generate this sphere inside the liquid shell easily; you can tell from the image that it’s still crystalline. But we saw that when we move or tilt the beam—or move the microscope stage under the beam—the solid particle follows it, like it was glued to the beam.”

Potentially, Oleshko says, electron could be a versatile and valuable tool, adding very fine manipulation to wide and growing lists of uses for electron microscopy in materials science. “Of course, this is challenging because it requires a vacuum,” he says, “but electron probes can be very fine, three orders of magnitude smaller than photon beams—close to the size of single atoms. We could manipulate very small quantities, even single atoms, in a very precise way.”

Explore further: New multiscale model unifies physical laws of water flow to span all scales

More information: V.P. Oleshko and J.M. Howe. Are electron tweezers possible? Ultramicroscopy (2011) doi:10.1016/j.ultramic.2011.08.015

Related Stories

Scientists generate rotating electron beams

Sep 17, 2010

A team of EU-funded scientists has come up with a way of generating rotating electron beams. The technique, described in the journal Nature, could be used to probe the magnetic properties of materials and co ...

Researchers use electron beams for chemical reactions

Apr 13, 2011

Electron microscopes use focussed electron beams to make extremely small objects visible. By combining the instrument with a gas-injection system material samples can be manipulated and surface structures ...

New tool for proton spin

May 06, 2011

How the particles that constitute a proton give rise to is to its rotation, or ‘spin’, is an intriguing open question of contemporary particle physics. A technique that could provide some answers ...

Software for the discovery of new crystal structures

May 11, 2011

A new software called QED (Quantitative Electron Diffraction), which has been licensed by Max Planck Innovation, has now been released by HREM Research Inc., a Japan based company, which is developing products and services ...

Recommended for you

Atom probe assisted dating of oldest piece of earth

1 hour ago

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dan42day
1 / 5 (1) Nov 10, 2011
Didn't IBM write their moniker in atoms manipulated using an electron microscope at least a dozen years ago. How is this different?
MaxwellsDemon
not rated yet Nov 10, 2011
IBM's Don Eigler used a custom scanning tunneling microscope to write "IBM" by moving 35 Xenon atoms into place in 1989: http://www.physor...987.html

The STM method requires an probe sharpened to an atomic point, and an electrical currents "grabs" the atom:
http://mrsec.wisc...und/STM/

The "electron tweezers" can apply the force at a distance by using an electron beam instead of a proximate probe tip.

More news stories

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Meth mouth menace

Something was up in Idaho. While visiting a friend in Athol, a small town north of Coeur d'Alene, Jennifer Towers, director of research affairs at the Tufts University School of Dental Medicine, noticed ...