Electrically controlling magnetic polarization of nuclei offers new way to store quantum information

Nov 11, 2011
Figure 1: Researchers can now use external voltage to better control the magnetic polarization of nuclei in their bid to store information in long-lasting quantum states. © 2011 iStockphoto.com/lucentius

Storing information in long-lasting quantum states is a prerequisite for building quantum computers. Intrinsic properties of nuclei known as magnetic spins are good storage candidates because they interact weakly with their environment; however, controlling them is difficult. Now, researchers in Japan have demonstrated an all-electrical method for preparing the magnetic states of nuclei that would be useful in storing quantum information. Keiji Ono at the RIKEN Advanced Science Institute, Wako, led the work.

In an , protons and neutrons pair up such that their magnetic spins align in opposite directions. However, in with an odd number of protons and neutrons, this pairing is incomplete; thus, they have a so-called ‘magnetic moment’ that points in no particular direction, hindering control.

Nuclear spins are difficult to align except at low temperatures and with large magnetic fields. But in devices called quantum dots, Ono and other researchers have shown they can manipulate the nuclear spins electrically. A quantum dot is made from a semiconductor material of just a few tens of nanometers in size. Using an external voltage (Fig. 1), the researchers could add electrons to a quantum dot one at time.

Similar to protons and neutrons, a single electron on a quantum dot possesses a spin that acts like an effective magnetic field on the surrounding nuclear spins. Physicists have used this interaction to control nuclear magnetic moments; but, they had only succeeded in significantly polarizing the nuclear moments in one direction. Ono’s team, however, showed that it is possible to polarize the nuclear moments either up or down—a quantum version of the ‘1’ and ‘0’ on a digital bit.

Ono and his team demonstrated this behavior in a double quantum dot—two quantum dots in series—made from the semiconductor gallium-arsenide. They showed they can ‘pump’ the nuclear spins into a particular direction by using voltages to place one electron on each dot and then polarize their spins such that they are either both up, or both down. As the spins on the dot relaxed, they ‘dragged’ the nuclear spins, polarizing them in the process. The nuclei remained polarized for several milliseconds—significantly longer than the polarized states of electron spins in similar devices.

The work offers a new way of controlling nuclear spins, says Ono, who now plans to study the polarization reversal process of the nuclear spins in more detail. Nuclear spins could “become a ubiquitous resource for storing information in a semiconductor,” he adds.

Explore further: New research signals big future for quantum radar

More information: Takahashi, R., Kono, K., Tarucha, S. & Ono, K. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots. Physical Review Letters 107, 026602 (2011). prl.aps.org/abstract/PRL/v107/i2/e026602

add to favorites email to friend print save as pdf

Related Stories

Could silicon be ideal in quantum computing?

Sep 16, 2011

(PhysOrg.com) -- "Quantum computing could provide a way to significantly speed up the way we process certain algorithms," Malcolm Carroll tells PhysOrg.com. "The primary issue, though, is that you need a well controlled two-le ...

10 billion bits of entanglement achieved in silicon

Jan 20, 2011

(PhysOrg.com) -- Scientists from Oxford University have made a significant step towards an ultrafast quantum computer by successfully generating 10 billion bits of quantum entanglement in silicon for the first ...

Recommended for you

New filter could advance terahertz data transmission

1 hour ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

1 hour ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

2 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

4 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

15 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.