Shoe strings and egg openers

Nov 08, 2011
The helper protein (blue) pulls on one end of Rubisco (coloured) and frees up the sugar. The blockage is lifted. Credit: Manajit Hayer-Hartl / Max Planck Institute for Biochemistry

Photosynthesis is one of the most important biological processes. However, it is less efficient in plants than it could be. Red algae, in contrast, use a slightly different mechanism and are thus more productive. Scientists from the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, have now identified a so far unknown helper protein for photosynthesis in red algae.

"We could elucidate its structure and its intriguing mechanism," says Manajit Hayer-Hartl, MPIB group leader. "Comparing its mechanism to the one in green could help to design more efficient plants." Their work has led to two recent publications in Nature and Nature Structural & Molecular Biology.

Green plants, algae and plankton metabolize carbon dioxide (CO2) and water into oxygen and sugar in the presence of light. Without this process called , today's life on earth would not be possible. The key protein of this process, called Rubisco, is thus one of the most important proteins in nature. It bonds with carbon dioxide and starts its conversion into sugar and oxygen.

"Despite its fundamental importance, Rubisco is an enzyme fraught with shortcomings", says Manajit Hayer-Hartl, head of the Research Group "Chaperonin-assisted Protein Folding" at the MPIB. One of the problems is that Rubisco binds to the wrong sugar molecules that inhibit its activity. The inhibitors have to be removed by a special helper protein, called Rubisco activase. The Max Planck scientists discovered that during evolution two different Rubisco activases developed in plants and in . They differ in structure and in their working mechanism.

The newly discovered Rubisco activase in red algae repairs useless Rubisco proteins by pulling on one end of the protein, like someone who opens a shoe string. In doing so, the helper protein opens the active centre of Rubisco and releases the inhibitory sugar. The respective Rubisco activase in works more like an egg opener, squeezing the inactive Rubisco protein and forcing it to let go of the molecules. "Understanding the structure and function of the two activase helper proteins should facilitate efforts in biotechnology to generate plants and microorganisms that are able to convert more CO2 into valuable biomass than nature does," hopes Manajit Hayer-Hartl.

Explore further: How steroid hormones enable plants to grow

Related Stories

Chaperones for climate protection

Jan 14, 2010

(PhysOrg.com) -- The World Climate Conference recently took place. Reports about carbon dioxide levels, rising temperatures and melting glaciers appear daily. Scientists from the Max Planck Institute (MPI) ...

Nitric oxide regulates plants as well as people

Apr 28, 2008

Nitric oxide has emerged as an important signaling molecule in plants - as in mammals including people. In studies of a tropical medicinal herb as a model plant, researchers have found that nitric oxide targets a number of ...

Turning plants into power houses

May 12, 2011

(PhysOrg.com) -- "I have a slide that has a photo of a cornfield and a big photovoltaic array," says Robert Blankenship, a scientist who studies photosynthesis at Washington University in St. Louis. "When ...

Recommended for you

How steroid hormones enable plants to grow

20 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

21 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

22 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

New discovery: Microbes create dripstones

Aug 18, 2014

According to new research humble, microscopic organisms can create dripstones in caves. This illustrates how biological life can influence the formation of Earth's geology - and the same may be happening ...

User comments : 0