Researchers efficiently extract photons from single semiconductor quantum dots directly into an optical fiber

November 3, 2011

( -- Researchers from the NIST Center for Nanoscale Science and Technology have led the development of a new technique for efficiently out-coupling photons from epitaxially-grown quantum dots directly into a standard single-mode optical fiber.

Single epitaxially-grown are potentially bright and stable sources of “on-demand” single for many applications in quantum information processing and communications. However, because these quantum dots are embedded in a high-refractive index semiconductor, total internal reflection limits the photon flux escaping the semiconductor to a small fraction (< 1 %) of the original emitted light.

The team of researchers from NIST, the University of Maryland, the University of Regensburg, and the University of Rochester has developed an approach that circumvents this limitation, resulting in a collection efficiency of 6 % into a single-mode optical fiber, with broadband spectral operation over tens of nanometers. Each quantum dot is embedded in a suspended GaAs channel waveguide with a width and thickness of about 200 nm and a length of a few micrometers.

Rather than collecting the small amount of emission from a selected quantum dot that escapes this waveguide vertically into free-space, an optical fiber taper waveguide captures some of the larger fraction of that quantum dot’s emission which is trapped in the semiconductor. The taper waveguide is a standard 125 µm-diameter, single mode that is gradually tapered to a diameter of about 1 µm along an approximately 1 cm-long section.

The two waveguides form a directional coupler, a common device used in lightwave systems to transfer power between adjacent waveguides through evanescent coupling. Photon correlation measurements confirm the single photon nature of the out-coupled quantum dot emission. By using single mode optical fibers typical to lightwave systems, the new technique is designed to be compatible with many quantum information processing applications. Finally, detailed simulations predict that the collection efficiency can be improved by an additional factor of 5 if the location of the quantum dot can be precisely controlled.

Explore further: This little light of mine: Changing the color of single photons emitted by quantum dots

More information: Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler, M. Davanço, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, Applied Physics Letters 99, 121101 (2011).

Related Stories

Single quantum dot nanowire photodetectors

December 14, 2010

Moving a step closer toward quantum computing, a research team in the Netherlands recently fabricated a photodetector based on a single nanowire, in which the active element is a single quantum dot with a volume of a mere ...

Etched quantum dots shape up as single photon emitters

February 23, 2011

( -- Like snowflakes or fingerprints, no two quantum dots are identical. But a new etching method for shaping and positioning these semiconductor nanocrystals might change that. What's more, tests at the National ...

Recommended for you

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.