Diversity of cabbage species explained

November 7, 2011 Rob Ramaker

The cabbage family is well-represented in the vegetable section of the supermarket. The cauliflower, red cabbage and broccoli found there were all bred from the cabbage species Brassica oleraciea. Its sister species Brassica rapa produced vegetables such as the Chinese cabbage and the turnip. But it is not clear quite where this large natural variety came from. Plant scientists guess that there is an extremely large genetic variation in cabbage plants. The genome of the Chinese cabbage, published in this month's Nature Genetics, supports this explanation.

'The of the Chinese cabbage, a B. rapa crop, does indeed provide evidence of this', explains Guusje Bonnema, assistant professor of Plant Breeding at Wageningen University and member of the international research team. ´We see a strikingly large number of genes that regulate flowering time. This varies according to crop type from twenty days to as much as two years.´ There is a clear link, then, between gene abundance and diversity. The hypothesis is further supported by the large number of genes involved in the hormonal system, which governs the formation of the plant.

The researchers also have an explanation for the source of these extra genes. It has been known for a while that the brassicas tripled their genetic material between five and nine million years ago. This is quite a common occurrence in plants, and afterwards, 'superfluous' genes mutate and disappear en masse. But a few groups of genes do seem to be kept and this made the eventual diversity of cabbage possible. The newly-mapped DNA sequence provides more than a fundamental insight into the characteristics of cabbage. 'The research is especially of use to the breeding sector', says Bonnema. 'Breeders always need markers'. Such markers in the genome reveal the presence of a particular gene, such as one for virus resistance, for example. Breeders can then select for this gene, making it easier to cross-breed genes into other species.

Explore further: Genes identified to protect brassicas from damaging disease

Related Stories

Genes identified to protect brassicas from damaging disease

November 1, 2007

Scientists have identified a new way to breed brassicas, which include broccoli, cabbage and oilseed rape, resistant to a damaging virus. Their discovery has characterised a form of resistance that appears to be durable, ...

Breeding better broccoli

November 4, 2009

Carotenoids—fat-soluble plant compounds found in some vegetables—are essential to the human diet and reportedly offer important health benefits to consumers. Plant carotenoids are the most important source of vitamin ...

New disease-resistant food crops in prospect

November 18, 2010

Researchers have uncovered the genetic basis of remarkable broad-spectrum resistance to a viral infection that, in some parts of the world, is the most important pathogen affecting leafy and arable brassica crops including ...

Recommended for you

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.