A 3-D way to release magnetic energy... fast!

Nov 10, 2011

Experiments discover a 3-D process by which magnetic reconnection can release energyfaster than expected by classical theories.

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have discovered a new process at work in a mysterious magnetic phenomenon that occurs both in the earth's atmosphere and in space, playing a role in events such as the aurora borealis and .

In a series of experiments on a device known as the Magnetic Reconnection Experiment (MRX), which replicates magnetic reconnection in the laboratory, a team of researchers found that many important plasma quantities are found to have strong variations in very early in the process. This variation may aid in the formation of regions of high with characteristics similar to what have been called "flux ropes."

Experiments show that when the reconnection rate spikes in this 3-D configuration, the high current ropes are ejected out of the reconnection region, leading to a sudden decrease in the current density. The researchers have termed this process a "current layer disruption."

"What makes this observation new and surprising is that the disruption process takes place in a truly 3-D way," said Seth Dorfman, a graduate student at PPPL who was part of the group conducting the experiments. "In many previous studies, the transition to fast reconnection is a 2-D process in which there are no variations along the reconnection current direction. By contrast, the 3-D current ropes ejected during a disruption are highly localized in the ."

These processes may be important for natural plasmas in space and astrophysics, Dorfman noted, where key plasma properties vary in all three directions. For example, current disruptions are also observed in plasmas in the , where the reconnection process is thought to trigger the . Efforts are ongoing to relate the new result to these observations, he said.

Explore further: Breakthrough in nonlinear optics research

More information: The work is part of research being presented by Dorfman and colleagues at the 53rd Annual Meeting of the American Physical Society Division of Plasma Physics, being held Nov. 14 – 18, in Salt Lake City, Utah.

Provided by American Physical Society

4.4 /5 (10 votes)

Related Stories

How space eruptions happen

Apr 07, 2009

(PhysOrg.com) -- Mathematicians at the University of St Andrews have made a discovery which could lead to a better understanding of why huge eruptions occur in space.

Honey, I Blew up the Tokamak

Aug 31, 2009

Magnetic reconnection could be the Universe's favorite way to make things explode. It operates anywhere magnetic fields pervade space--which is to say almost everywhere. On the sun magnetic reconnection causes ...

Recommended for you

Squeezing out new science from material interfaces

9 minutes ago

With more than five times the thermal conductivity of copper, diamond is the ultimate heat spreader. But the slow rate of heat flow into diamond from other materials limits its use in practice. In particular, ...

The dark side of cosmology

4 hours ago

It's a beautiful theory: the standard model of cosmology describes the universe using just six parameters. But it is also strange. The model predicts that dark matter and dark energy – two mysterious entities ...

Studying effects of target 'tents' on NIF

5 hours ago

A systematic study of the effects on National Ignition Facility (NIF) implosions of the ultra-thin mounting membranes that support target capsules inside NIF hohlraums was reported by LLNL researchers in ...

Mathematicians model fluids at the mesoscale

5 hours ago

When it comes to boiling water—or the phenomenon of applying heat to a liquid until it transitions to a gas—is there anything left for today's scientists to study? The surprising answer is, yes, quite ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.