Custom glass bending

Nov 03, 2011
Researchers are examining a curved glass panel in front of the test furnace. Credit: Fraunhofer IWM

The possible applications for curved glass panels are many and varied – ranging from facades to designer furniture. Researchers have now developed a process which enables the panels to be shaped six times faster and considerably more cost-effectively. Even small batches can be produced economically.

At times a shimmering gray, at times more of a greenish color, the facades of high-rise buildings are mostly fairly similar in appearance. They become unique when individual glass elements are shaped differently, however. The problem is that manufacturing a large number of short runs of glass elements is complex and expensive. The glass bender must first produce an appropriate mold, before laying the glass on top of the mold in a walk-in furnace. At this stage, the glass is only in contact with the top edge of the mold. The furnace is closed and heated over a period of several hours until the material becomes viscous, sinks downward and takes on the shape of the bending mold. The has its pitfalls, though: if the glass is not heated for long enough, it will not adopt the predefined shape. But if the process lasts too long, pressure marks form at the support points.

All that is set to change now, as researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg have developed a new glass-bending process as part of a sponsored joint project. “Our process is roughly six times faster than the conventional process, as well as being considerably more energy-efficient and cost-effective,” explains Tobias Rist, a scientist at the IWM. “It’s no longer necessary to produce a special steel mold.” Instead, the researchers have developed a mold which changes according to requirements – it is vaguely reminiscent of the pin art gadgets that you can press your hand into to make an image. The mold starts out flat, with all the support points at the same height. Since the mold and the glass panel placed on it are moved into the furnace by machine, there is no longer any need to reheat the furnace for each batch of glass because the researchers can load it while it is in operation. The process saves a lot of energy and a few hours’ time which the furnace would otherwise need to heat up and cool down.

For one thing, the temperature of the furnace is a few degrees below the temperature at which the glass becomes viscous. Another feature is that additional heat is applied to the glass using a stream of hot air or a laser only at those points which are to be shaped, so that only these parts of the glass become viscous. The mold then adopts the desired geometry at the touch of a button. A device positions the support points so the glass is able to sink downward as dictated by its temperature and the shape of the mold. The major advantages of this approach are that the material changes shape only at the desired points and that flat surfaces stay flat. They do not warp unchecked as before and do not bend back into shape again. This considerably improves the quality of the product’s appearance, with fewer distortions for example. The material assumes the shape better and fewer indentations are formed in the glass.

But how long does the glass need to be heated for? And what is the ideal temperature? “While the conventional process relies a great deal on trial and error, we simulate the process and the material behavior on a computer. We then compare the outcome with the results from physical tests so we can identify and implement the most favorable process conditions,” says Rist. The researchers are also able to regulate and monitor the temperature during the process. So far they have processed sheet glass measuring up to approximately one square meter. The next steps will see the sizes increase and the shapes become even more complex; for example the scientists are aiming not only to produce hemispherical structures but also to go one step further and create aspherical forms. There is also scope for the specialists to improve bending processes or develop processes for producing sheet glass with functional coatings.

Explore further: Fiber-optic microscope will help physicians detect cancer, diseases at early stages

add to favorites email to friend print save as pdf

Related Stories

Hot embossing glass -- to the nearest micrometer

Dec 02, 2010

The lens is what matters: if lens arrays could be made of glass, it would be possible to make more conveniently sized projectors. Fraunhofer researchers have now developed a process that allows this key component ...

AGC creates 15% lighter glass for mobile devices

Apr 25, 2011

(PhysOrg.com) -- Asahi Glass Co. (AGC), a Tokyo-based makers of flat glass, automotive glass, display glass, chemicals and other high-tech materials and components, has announced the creation of a the world's ...

Custom-Sized Microlenses

Aug 30, 2004

Optical components have joined the trend towards miniaturization. There have, however, been no methods available thus far to produce custom-sized glass lenses. A new process now enables the low-cost, high-volume manufacture of ...

Recommended for you

Ten ways 3D printing could change space exploration

44 minutes ago

This close-up shows a titanium ball manufactured by 3D printing. ESA is investigating the potential of this promising new technology to transform the way space missions are put together.

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

User comments : 0

More news stories

How does false information spread online?

Last summer the World Economic Forum (WEF) invited its 1,500 council members to identify top trends facing the world, including what should be done about them. The WEF consists of 80 councils covering a wide range of issues including social media. Members come ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Australia's dirty secret: who's breathing toxic air?

Australians living in poorer communities, with lower employment and education levels, as well as communities with a high proportion of Indigenous people, are significantly more likely to be exposed to high ...