Finding E. coli’s Achilles heel

November 10, 2011

(PhysOrg.com) -- Thanks to the work of a Simon Fraser University researcher and two of his students, science is closer to finding a new way of combatting infections caused by Escherichia coli (E. coli) and other related bacteria.

E. coli are found naturally in human intestines and perform some important digestive duties. But a potentially deadly version is commonly found in spoiled or rotten food and attacks the human digestive system, causing food poisoning.

SFU and biochemistry (MBB) associate professor Mark Paetzel and his students Kelly Kim and Suraaj Aulakh have discovered how two proteins bind together in the outer membrane of E. coli.

The Journal of Biological Chemistry has just published their findings on-line in the paper Crystal structure of the β-barrel assembly machinery BamCD complex.

Like many disease-causing forms of bacteria, E. coli bacteria are becoming increasingly resistant to conventional antibiotics. However, Paetzel, Kim (doctoral candidate) and Aulakh (master’s candidate) believe E. coli’s dependence on a factory-like machine in its outer membrane to keep it alive provides science with an untapped Achilles heel.

The trio has discovered how two proteins (BamC and BamD) in E. coli’s outer membrane bind together to help form what is known as the β-barrel assembly machinery (BAM) complex.

Once up and running the complex ensures proper formation of proteins in the outer membrane, which serves as a protective barrier for E. coli. These proteins can function as foot soldiers that ensure E. coli’s survival by helping it to penetrate and attack its hosts, fight antibiotics and accomplish other tasks.

If Paetzel and his team isolate how the BAM complex’s other proteins bind together and collectively kick start the complex’s protein-assembly-mechanism they’ll have cornered E. coli’s Achilles heel.

“Being able to see and understand how this happens would enable us to design inhibitors to stymie the complex’s formation and startup,” adds Kim.

Says Aulakh: “It would be like watching a molecular movie in real time and designing a monkey wrench, effectively a new form of antibiotics, to shut down or cripple the complex before it starts functioning.”

The researchers hope the BAM complex could be a potential new drug target to help fight many diseases, such as meningitis and gonorrhea, which are also caused by BAM-containing bacteria.

Explore further: A long-sought test for direct detection of disease-causing E. coli bacteria

Related Stories

Researchers modify harmless bacteria to kill harmful bacteria

August 17, 2011

(PhysOrg.com) -- Researchers in Singapore have modified the DNA of one type of bacterium, Escherichia coli, to first sense the presence of another bacterium, Pseudomonas aeruginosa, and then to explode, releasing a special ...

Virus uses 'Swiss Army knife' protein to cause infection

August 17, 2011

In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into bacteria like ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.