Researchers adapt classic antennas to harness more power from the sun

Nov 10, 2011

Some solar devices, like calculators, only need a small panel of solar cells to function. But supplying enough power to meet all our daily needs would require enormous solar panels. And solar-powered energy collected by panels made of silicon, a semiconductor material, is limited -- contemporary panel technology can only convert approximately seven percent of optical solar waves into electric current.

Profs. Koby Scheuer, Yael Hanin and Amir Boag of Tel Aviv University's Department of Physical Electronics and its innovative new Renewable Energy Center are now developing a solar panel composed of nano-antennas instead of semiconductors. By adapting classic metallic antennas to absorb at optical frequencies, a much higher conversion rate from light into useable energy could be achieved. Such efficiency, combined with a lower material cost, would mean a cost-effective way to harvest and utilize "green" energy.

The technology was recently presented at Photonics West in San Francisco and published in the conference proceedings.

Receiving and transmitting green energy

Both radio and optical waves are electromagnetic energy, Prof. Scheuer explains. When these waves are harvested, electrons are generated that can be converted into . Traditionally, detectors based on like silicon are used to interface with light, while radio waves are captured by antenna.

For optimal absorption, the antenna dimensions must correspond to the light's very short wavelength -- a challenge in that plagued engineers in the past, but now we are able to fabricate antennas less than a micron in length. To test the efficacy of their antennas, Prof. Scheuer and his colleagues measured their ability to absorb and remit energy. "In order to function, an antenna must form a circuit, receiving and transmitting," says Prof. Scheuer, who points to the example of a cell phone, whose small, hidden antenna both receives and transmits in order to complete a call or send a message.

By illuminating the antennas, the researchers were able to measure the antennas' ability to re-emit radiation efficiently, and determine how much power is lost in the circuit -- a simple matter of measuring the wattage going in and coming back out. Initial tests indicate that 95 percent of the wattage going into the antenna comes out, meaning that only five percent is wasted.

According to Prof. Scheuer, these "old school" antennas also have greater potential for solar energy because they can collect wavelengths across a much broader spectrum of light. The solar spectrum is very broad, he explains, with UV or infrared rays ranging from ten microns to less than two hundred nanometers. No semiconductor can handle this broad a spectrum, and they absorb only a fraction of the available energy. A group of antennas, however, can be manufactured in different lengths with the same materials and process, exploiting the entire available spectrum of light.

When finished, the team's new solar panels will be large sheets of plastic which, with the use of a nano- imprinting lithography machine, will be imprinted with varying lengths and shapes of metallic antennas.

Improving solar power's bottom line

The researchers have already constructed a model of a possible solar panel. The next step, says Prof. Scheuer, is to focus on the conversion process -- how becomes electric current, and how the process can be improved.

The goal is not only to improve the efficiency of , but also to make the technology a viable option in terms of cost. Silicon is a relatively inexpensive semiconductor, but in order to obtain sufficient power from antennas, you need a very large panel -- which becomes expensive. Green energy sources need to be evaluated not only by what they can contribute environmentally, but also the return on every dollar invested, Prof. Scheuer notes. "Our antenna is based on metal -- aluminium and gold -- in very small quantities. It has the potential to be more efficient and less expensive."

Explore further: First in-situ images of void collapse in explosives

Related Stories

Researchers develop a way to funnel solar energy

Sep 12, 2010

(PhysOrg.com) -- Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could ...

New solar product captures up to 95 percent of light energy

May 16, 2011

Efficiency is a problem with today's solar panels; they only collect about 20 percent of available light. Now, a University of Missouri engineer has developed a flexible solar sheet that captures more than 90 percent of available ...

Hybrid power plants can help industry go green

Nov 03, 2011

Hybrid cars, powered by a mixture of gas and electricity, have become a practical way to "go green" on the roads. Now researchers at Tel Aviv University are applying the term "hybrid" to power plants as well.

Recommended for you

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0