Butterfly wings inspire design of water-repellent surface

Nov 21, 2011

Researchers mimic the many-layered nanostructure of blue mountain swallowtail wings to make a silicon wafer that traps both air and light.

The brilliant blue wings of the mountain swallowtail (Papilio ulysses) easily shed water because of the way ultra-tiny structures in the butterfly's wings trap air and create a cushion between water and wing.

Human engineers would like to create similarly water repellent surfaces, but past attempts at artificial air traps tended to lose their contents over time due to external perturbations. Now an international team of researchers from Sweden, the United States, and Korea has taken advantage of what might normally be considered defects in the nanomanufacturing process to create a multilayered silicon structure that traps air and holds it for longer than one year.

The researchers used an etching process to carve out micro-scale pores and sculpt tiny cones from the silicon. The team found that features of the resulting structure that might usually be considered defects, such as undercuts beneath the etching mask and scalloped surfaces, actually improved the water repellent properties of the silicon by creating a multilayered hierarchy of air traps. The intricate structure of pores, cones, bumps, and grooves also succeeded in trapping light, almost perfectly absorbing wavelengths just above the .

The biologically inspired surface, described in the AIP's journal , could find uses in electro-optical devices, infrared imaging detectors, or .

Explore further: Tiny carbon nanotube pores make big impact

More information: "Multifunctional silicon inspired by wing of male Papilio ulysses" is accepted for publication in Applied Physics Letters.

Provided by American Institute of Physics

5 /5 (2 votes)

Related Stories

Team develops method for creating 3D photonic crystals

Nov 07, 2011

Dutch researchers at the University of Twente's MESA+ research institute, together with ASML, TNO (the Netherlands Organisation for Applied Scientific Research) and TU/e (Eindhoven University of Technology) ...

Nanomaterials: Pillars of the assembly

Sep 29, 2011

The ever-increasing demand for enhanced performance in electronic devices such as solar cells, sensors and batteries is matched by a need to find ways to make smaller electrical components. Several techniques ...

Coating copies microscopic biological surfaces

Sep 17, 2008

Someday, your car might have the metallic finish of some insects or the deep black of a butterfly's wing, and the reflectors might be patterned on the nanostructure of a fly's eyes, according to Penn State ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.