Sensible use of biomass: A chemical industry based on renew

Nov 14, 2011

(PhysOrg.com) -- Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry. The environmental problems related to this are known, and these resources will eventually run out. In addition to wind, water, geothermal, and solar energy, biomass is also drawing increasing attention as a renewable resource.

In an essay presented in the journal , Esben Taarning and co-workers from the company Haldor Topsoe and the Lindoe Offshore Center (Denmark) describe how a sensible transition from to a chemical industry based on biomass might look.

To date, most of the biomass used by industry has been burned to generate energy. According to the authors, in the long term this is not the optimal use. “It is also not the most sensible solution to convert biomass into fuels,” says Taarning. “In the first place, the amount of biomass available does not meet the demand for fuels; in the second, the chemical characteristics of fuels and biomass are too different, so the processes would be too complex and uneconomical.” Means of transportation should be gradually switched to batteries or fuel cells.” Says Taarning: “In contrast, it really makes sense to use biomass as the for chemical industry. The available biomass should suffice to replace the fossil feedstocks used in the production of chemicals. The chemical characteristics of biomass and many bulk chemicals are also very similar, so the processes should be more economical than those for the conversion into fuels.”

When we do this, however, we need to diverge from the established value chains: instead of using brute force to convert these raw materials into specific platform chemicals that were originally selected because of their easy accessibility when starting from fossil resources, it would be better to use the interesting chemical characteristics already available in the biomass resources themselves and to optimize the use of favorable catalytic reaction pathways. “Through the clever selection of target chemicals it is possible to significantly increase the value added,” says Taarning. Because the development costs will be high and the first processes inefficient, it makes sense to initially concentrate on high-value products, thereby allowing for faster widespread adoption.

Also, many primary products and by-products of our current biofuel industry could be interesting platform chemicals in themselves: for example, ethanol as a starting material for the production of acetic acid, ethylene, and ethylene glycol, or glycerol for conversion into acrylic acid, a polymer precursor.

“The shift from a fossil-based chemical industry to one based on biomass poses many challenges,” says Taarning, “but the possibilities are also great: to develop a more sustainable chemical industry utilizing a more versatile feedstock supply and producing products with superior properties.”

Explore further: Producing biodegradable plastic just got cheaper and greener

More information: Esben Taarning, Beyond Petrochemicals: The Renewable Chemicals Industry, Angewandte Chemie International Edition 2011, 50, No. 45, 10502–10509, Permalink to the article: dx.doi.org/10.1002/anie.201102117

Related Stories

New Ways to Use Biomass

Sep 22, 2008

(PhysOrg.com) -- Alternatives to fossil fuels and natural gas as carbon sources and fuel are in demand. Biomass could play a more significant part in the future. Researchers in the USA and China have now developed ...

Turning over a new leaf for future energy supplies

Dec 15, 2008

A global energy supply based on biomass grown to generate electricity and produce fuel is a real possibility. According to Prof. J├╝rgen O. Metzger from Carl von Ossietzky University of Oldenburg in Germany and Prof. Aloys ...

Recommended for you

Aluminum clusters shut down molecular fuel factory

Jul 06, 2015

Despite decades of industrial use, the exact chemical transformations occurring within zeolites, a common material used in the conversion of oil to gasoline, remain poorly understood. Now scientists have ...

New catalyst does more with less platinum

Jul 06, 2015

Platinum is a highly reactive and in-demand catalyst across the chemical and energy industries, but a team of University of Wisconsin-Madison and Georgia Institute of Technology scientists could reduce the ...

Learning from biology to accelerate discovery

Jul 06, 2015

A spider's web is one of the most intricate constructions in nature, but its precious silk has more than one use. Silk threads can be used as draglines, guidelines, anchors, pheromonal trails, nest lining, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.